共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Choi I Suntivich R Plamper FA Synatschke CV Müller AH Tsukruk VV 《Journal of the American Chemical Society》2011,133(24):9592-9606
We report the unique layer-by-layer (LbL) assembly behavior of pH-sensitive star-shaped polyelectrolytes with both linear and exponential growth modes controlled by star architecture and assembly conditions. Cationic poly[2-(dimethylamino)ethyl methacrylate] and anionic poly(acrylic acid) stars were synthesized via "core-first" atom-transfer radical polymerization (ATRP) based on multifunctional initiators, in addition to their linear analogues. We demonstrated the LbL growth behavior as a function of deposition pH (ranging from 5 to 7), number of layers (up to 30 bilayers), and the method of assembly (dip- vs spin-assisted LbL). The spin-assisted LbL assembly makes it possible to render smoother and thinner LbL films with parameters controlled by the shear rate and pH conditions. In contrast, for dip-assisted LbL assembly, the pH-dependent exponential growth was observed for both linear and star polyelectrolytes. In the case of linear/linear pair, the exponential buildup was accompanied with a notable surface segregation which resulted in dramatic surface nonuniformity, "wormlike" heterogeneous morphology, and dramatic surface roughening. In contrast, star/linear and star/star LbL films showed very uniform and smooth surface morphology (roughness below 2.0 nm on the scale of 10 μm × 10 μm) with much larger thickness reaching up to 1.0 μm for 30 bilayers and rich optical interference effects. Star polyelectrolytes with partially screened charges and high mobility caused by compact branched architecture appear to facilitate fast diffusion and exponential buildup of LbL films. We suggest that the fast buildup prevents long-range lateral diffusion of polyelectrolyte star components, hinders large-scale microphase separation, and thus leads to unique thick, smooth, uniform, transparent, and colorful LbL films from star polyelectrolytes in contrast to mostly heterogeneous films from traditional linear counterparts. 相似文献
3.
Porcel C Lavalle P Ball V Decher G Senger B Voegel JC Schaaf P 《Langmuir : the ACS journal of surfaces and colloids》2006,22(9):4376-4383
There exist two types of polyelectrolyte multilayers: those whose thickness increases linearly with the number of deposition steps, which are nicely structured, and those whose thickness increases exponentially, which resembles hydrogels. This simple picture has recently slightly evolved with the finding that some exponentially growing films enter into a linear growth phase after a certain number of deposition steps. In this study, we investigate the buildup process of hyaluronic acid/poly(L-lysine) (HA/PLL) multilayers that constitute one of the best known exponentially growing systems. The films are built by using two deposition methods: the well-known dipping method and the more recent spraying method where the polyelectrolyte solutions are sprayed alternately onto a vertical substrate. The goal of this study is twofold. First, we investigate the influence of the main parameters (i.e., spraying rate and spraying time) of the spraying method on the film growth process. We find that, as for the dipping method, the film thickness first evolves exponentially with the number of deposition steps, and after a given number of deposition steps, it follows a linear evolution. We find that similar behavior is observed with the dipping method. Second, because the spraying method allows the very fine variation of the different parameters of the buildup, we use this method to investigate the exponential-to-linear transition. We find that this transition always takes place after about 12 deposition steps whatever the values of the parameters controlling the deposition process. We discuss our results in light of a model proposed by Hübsch et al. (Hübsch, E.; Ball, V.; Senger, B.; Decher, G.; Voegel, J. C.; Schaaf, P. Langmuir 2004, 20, 1980-1985) and later by Salom?ki et al. (Salom?ki, M.; Vinokurov, I. A.; Kankare, J. Langmuir 2005, 21, 11232-11240) in which it is assumed that the exponential-to-linear transition is due to a film restructuring that progressively forbids the diffusion of one of the polyelectrolytes constituting the film over part of the film. This "forbidden" zone then grows with the number of deposition steps so that the outer zone of the film that is still concerned with diffusion keeps a constant thickness and moves upward as the total film thickness increases. 相似文献
4.
A series of organized multilayers have been formed by the alternative adsorption of positively charged poly(dimethyldiallylammonium chloride) (PDAC) and purple membrane (PM) fragments in suspensions at pH = 4—11. Both UV-vis spectrophotometry and quartz crystal micro-balance (QCM) technique were used to monitor the deposition process of PDAC/bacteriorhodopsin (bR) multilayers, suggesting that PM fragments and PDAC are deposited alternatively on the substrate uniformly. Upon illumination, all these multilayers generate photovoltages with defined signs. The negative sign of photovoltage accompanying the formation of M-state at pH <7 indicates that the extracellular side of PM fragments is directed toward the substrate; and the positive sign at pH≥7 indicates that the cytoplasmic side of PM fragments is directed toward the substrate. In addition, the long-lived multiple M-state has been observed in all multilayer films. Moreover, M-state at high pH, which shows the longer lifetime than that at low pH, de 相似文献
5.
Garza JM Schaaf P Muller S Ball V Stoltz JF Voegel JC Lavalle P 《Langmuir : the ACS journal of surfaces and colloids》2004,20(17):7298-7302
The layer by layer deposition process of polyelectrolytes is used to construct films equipped with several compartments containing "free polyelectrolytes". Each compartment corresponds to a stratum of an exponentially growing polyelectrolyte multilayer film, and two consecutive compartments are separated by a stratum composed of a linearly growing multilayer that acts as a barrier preventing polyelectrolyte diffusion from one compartment to another. We use hyaluronic acid/poly(L-lysine) as the system to build the compartments and the poly(styrene sulfonate)/poly(allylamine) system for the barrier. Using confocal microscopy, it is shown that poly(L-lysine) diffuses only within the compartment in which it was initially introduced during the film construction and is thus unable to cross the barriers. Using fluorescein isothiocyanate as a pH indicator, it is also shown that although poly(styrene sulfonate)/poly(allylamine) multilayers act as a barrier for polyelectrolytes, they do not prevent proton diffusion through the film. Such films open the route for multiple functionalization of biomaterial coatings. 相似文献
6.
In polymer films carrying an excess of fixed charge the electrostatic penalty to bring ions of same charge from the bathing electrolyte into the film sets a membrane potential (Donnan Potential) across the film-electrolyte interface. This potential is responsible for the ionic permselectivity observed in polyelectrolyte membranes. We have used electrochemical measurements to probe the dependence of the Donnan potential on the acid-base equilibrium in layer-by-layer self-assembled polyelectrolyte multilayers. The voltammperogram peak position of the Os(III)/Os(II) couple in self-assembled polyelectrolyte multilayers comprised of poly(allylamine) derivatized with Os(bpy)(2)PyCl+ and poly(vinylsulfonate) was recorded in solutions of increasing ionic strength for different assembly and testing solution pH. Protonation-deprotonation of the weak redox poly(allylamine) changes the fixed charge population in the as prepared (intrinsic) self-assembled redox polyelectrolyte multilayers. For films assembled in solutions of pH higher than the test solution pH, the Donnan plots (E(app) vs log C) exhibit a negative slope (anionic exchanger) while for films assembled at lower pH than that of the test solution positive slopes (cationic exchanger) are apparent. The ion exchange mechanism has been supported by complementary electrochemical quartz crystal microbalance. X-ray photoelectron spectroscopy and infrared reflection-absorption spectroscopy experiments demonstrated that the as prepared films have a memory effect on their protonation state during assembly, which leads to the observed dependence of the Donnan potential on the adsorption pH. 相似文献
7.
The effects of temperature, pH, and salt concentration on the layer-by-layer (LBL) deposition of sodium poly(styrene sulfonate) (PSS)/poly[2-(dimethylamino)ethyl methacrylate] (PDEM) were investigated by use of a quartz crystal microbalance with dissipation (QCM-D). At pH 4, the frequency change (Deltaf) gradually decreased to a constant, indicating that the polyelectrolyte complexes of the layer were not dissolved. As the layer number increased, the -Deltaf oscillatedly increased, indicating that the thickness of the multilayer increased. At the same time, the dissipation change (DeltaD) oscillatedly increased with the layer number, indicating the chain interpenetration or complexation that led to the alternative swelling-and-shrinking of the outermost layer. For the same layer number, as the temperature increased, the amplitude of DeltaD increased, indicating that the chain interpenetration increased. The thickness also increased with temperature. Further increasing the pH to 7 led to a thicker layer, reflected in the larger amplitude of DeltaD. At pH 10, the polyelectrolytes no longer formed multilayers on the surface because of the lack of electrostatic interactions. On the other hand, the addition of NaCl also led to a thickness increase. The amplitude in DeltaD increased with NaCl concentration, indicating that the chain interpenetration increased. Our experiments indicated that the LBL deposition of polyelectrolytes was dominated by the chain interpenetration. Also, the polyelectrolyte complexes in the layer can redissolve into solution from the surface at a high temperature or a high salt concentration. 相似文献
8.
Ferreyra NF Forzani ES López Teijelo M Coche-Guérente L Labbé P 《Langmuir : the ACS journal of surfaces and colloids》2006,22(21):8931-8938
The ellipsometric characterization of a layer-by-layer electrostatically self-assembled multilayer of polyphenol oxidase and alkaline phosphatase with the polycation poly(dimethyldiallylammonium chloride) built on an immunologic layer formed by immunoglobulin G (IgG) and glucose oxidase-conjugated anti-IgG (IgG-GOD) on glassy carbon is reported. The step-by-step evolution of the psi-Delta ellipsometric angles was followed during film growth. Two optical models, named the three-layer film model and reorganization film model, were employed and found suitable for ellipsometric data interpretation. A comparative analysis of film optical properties, film thickness, and ellipsometric mass assessed from both models is also presented. 相似文献
9.
In this Article, we investigate the effect of a precursor layer, which is composed of four bilayers of polyethyleneimine (PEI) and poly(sodium styrene sulfonate) (PSS), on the subsequent LBL assembly of hybrid films composed of indium tin oxide (ITO) nanoparticles and PSS. A precursor polyelectrolyte layer is usually deposited to minimize interference by the substrate. It is shown here that the "effective" surface charge of the precursor layer can significantly affect the subsequent assembly behavior of [ITO/PSS](9.5) hybrid thin films. Depending on the surface charge of the precursor layer, the subsequent LbL assembly of [ITO/PSS](9.5) hybrid films can exhibit either one or two regimes. When two growth regimes are present, the first one consists of a "recovery regime", and the second is the expected "linear growth regime." The length of the "recovery regime" is dependent on how much positive charge the precursor layer possesses and how fast this surface charge can be compensated. This work reveals for the first time that changes in the surface charge of the precursor layer can have a significant effect on the subsequent LBL assembly process. The surface charge of the precursor layer was investigated using ζ-potential measurements on model silica microspheres. These experiments showed that the surface charge of the precursor layer, [PEI/PSS](4), is dependent on the pH of the solution in which it is immersed, and that it can reverse from a negatively charged surface to a positively charged one, at sufficiently low pH due to the protonation of PEI, despite having the negatively charged PSS layer as the outermost layer. 相似文献
10.
Krogman KC Zacharia NS Schroeder S Hammond PT 《Langmuir : the ACS journal of surfaces and colloids》2007,23(6):3137-3141
The recently developed practice of spraying polyelectrolyte solutions onto a substrate in order to construct thin films via the layer-by-layer technique has been further investigated and extended. Here we describe a fully automated system capable of depositing thin polymer films from atomized mists of solutions containing species of complementary functionality. Film growth is shown to be similar to that in conventional "dipped" LbL assembly, whereas the reported technology allows us to realize 25-fold decreases in process times. Furthermore, complete automation removes human interaction and the possibility of operator-induced nonuniformities. We extend the versatility of the spray LbL technology by depositing both weak and strong polyelectrolyte films, hydrogen-bonded films, and dendritic compounds and nanoparticles, broadening its range of future applications. Finally, the technology is used to uniformly coat an otherwise hydrophobic substrate from aqueous solutions. ESEM images indicate that the atomization process produces a conformal coating of individual nanofibers within the substrate, dramatically changing the hydrophilicity of the macroscopic surface. Such an automated system is easily converted to an array of nozzle banks and could find application in the rapid, uniform coating of large areas of textile materials. 相似文献
11.
Altman M Shukla AD Zubkov T Evmenenko G Dutta P van der Boom ME 《Journal of the American Chemical Society》2006,128(22):7374-7382
Layer-by-layer assembly of two palladium coordination-based multilayers on silicon and glass substrates is presented. The new assemblies consist of rigid-rod chromophores connected by terminal pyridine moieties to palladium centers. Both colloidal palladium and PdCl2(PhCN)2 were used in order to determine the effect of the metal complex precursor on multilayer structure and optical properties. The multilayers were formed by an iterative wet-chemical deposition process at room temperature in air on a siloxane-based template layer. Twelve consecutive deposition steps have been demonstrated resulting in structurally regular assemblies with an equal amount of chromophore and palladium added in each molecular bilayer. The optical intensity characteristics of the metal-organic films are clearly a function of the palladium precursor employed. The colloid-based system has a UV-vis absorption maximum an order of magnitude stronger than that of the PdCl2-based multilayer. The absorption maximum of the PdCl2-based film exhibits a significant red shift of 23 nm with the addition of 12 layers. Remarkably, the structure and physiochemical properties of the submicron scale PdCl2-based structures are determined by the configuration of the approximately 15 angstroms thick template layer. The refractive index of the PdCl2-based film was determined by spectroscopic ellipsometry. Well-defined three-dimensional structures, with a dimension of 5 microm, were obtained using photopatterned template monolayers. The properties and microstructure of the films were studied by UV-vis spectroscopy, spectroscopic ellipsometry, atomic force microscopy (AFM), X-ray reflectivity (XRR), scanning electron microscopy (SEM), and aqueous contact angle measurements (CA). 相似文献
12.
Abu-Sharkh B 《Langmuir : the ACS journal of surfaces and colloids》2006,22(7):3028-3034
MD simulation of the layer-by-layer assembly of polyelectrolytes (PEs) and nanoparticles (NPs) revealed that the assembly process is electrostatically driven with alternating charge reversal and an overcompensation mechanism. Layers were observed to grow in the lateral direction as well as in a direction normal to the surface. Weakly adsorbed PE molecules were observed to desorb from the flat and NP surfaces. Those molecules are attracted by suspended NPs in solution. PE molecules do not only pull NPs toward the surface but bridge NPs both in solution and on the surface, forming agglomerates and islands. The first double layer differs in structure from the second double layer as a result of strong adsorption of the PE molecules to the rigid surface. 相似文献
13.
Schoeler B Sharpe S Hatton TA Caruso F 《Langmuir : the ACS journal of surfaces and colloids》2004,20(7):2730-2738
Random copolymers composed of diallyldimethylammonium chloride (DADMAC) and acrylamide with varying contents (8-100 mol %) of the cationic DADMAC component were alternated with polyanionic, fully charged poly(styrenesulfonate) to form multilayer thin films. UV-vis spectrophotometry, FTIR spectroscopy, and quartz-crystal microgravimetry (QCM) were employed to follow multilayer buildup. Atomic force microscopy was used to obtain structural information. Layer thicknesses have been determined with small-angle X-ray scattering and ellipsometry, in addition to values calculated from QCM. While in previous work, a critical charge density limit could be observed, below which no layer growth is possible; in this system, multilayer formation takes place with copolymers with charge densities as low as 8 mol %. Instead of a continuous increase of adsorbed amounts with decreasing charge density above the critical charge density, as found in previous work, similar layer thicknesses for films with 100 and 8 mol % charged polyelectrolytes and maximally adsorbed amounts for copolymers in an intermediate charge density region have been found. This adsorption behavior is explained in terms of synergistic nonelectrostatic interactions between the polyelectrolytes used. 相似文献
14.
以钠蒙脱土分散液作为模拟钻井液,与支化聚乙烯亚胺聚合物溶液交替流过模拟井壁(硅片),模拟生物矿化过程,进行层层沉积模拟实验。通过原子力显微镜、扫描电镜、红外光谱、X射线衍射等手段跟踪钠蒙脱土/聚乙烯亚胺复合膜的成膜过程,并表征复合膜的形貌、微观结构、化学组成及力学性能。结果表明,钠蒙脱土和聚乙烯亚胺可自发在模拟井壁上形成结构致密的有机/无机复合膜,该复合膜具有明显的层状结构,平均每层厚度约为46.18nm。该复合膜力学性能优良,而且杨氏模量并不随沉积层数的增加而变化。通过动态滤失实验表明,层层沉积改善了滤饼质量,降低了滤失速率以及总的动态滤失量,有助于井壁稳定。 相似文献
15.
The effect of toluene solubilization on the size and mobility of Triton X100 (TX100) micelles and TX100/sodium dodecyl sulfate (SDS) mixed micelles was studied by turbidimetry, dynamic light scattering, and capillary electrophoresis. Micelle growth due to toluene solubilization was observed for both surfactant systems; however, two different modes of growth were seen. Mixed micelles in 0.1 M NaCl are spherical (apparent diameter d(app) = 8 nm) and remain so while taking up 3 mM toluene, with a volume increase per micelle of deltaV(m) = 50 nm3. In 0.5 M NaCl, the large d(app) of both nonionic and mixed micelles (14 and 24 nm, respectively) indicate ellipsoidal or rodlike shapes, and their large increases in d(app) upon addition of 3 mM toluene thus correspond to elongational growth, with the same deltaV(m) = 50 nm3. Further addition of toluene to TX100/SDS in 0.5 M NaCl results in a dramatic increase in micelle size followed by an unexpected bimodal size distribution. The addition of excess toluene leads to the formation of ca. 140 nm toluene droplets, stabilized mainly by monomers of the high critical micelle concentration surfactant, SDS. These microemulsions coexist with the smaller (20 nm) swollen mixed micelles. 相似文献
16.
Spherical polyelectrolyte brushes(SPBs) consisting of polystyrene(PS) core and poly(2-aminoethyl methacrylate hydrochloride)(PAEMH) shell were prepared by photo-emulsion polymerization. Au nanoparticles(Au-NPs) with controlled size and size distribution were synthesized in situ using SPBs as nanoreactors. Via layer-by-layer deposition technique on the surface of SPBs, nano-composite particles with Au/Ag-NPs bilayer and Au/Ag/Au-NPs trilayer were prepared. The structures of the as-prepared Au/Ag multilayer SPBs were characterized by UV-Vis spectroscopy, TEM, ICP-AES and DLS. The charge reversal of the nano-composite particles observed by zeta potential confirmed the success of layer-by-layer assembly. The Au/Ag-NPs bilayer nano-composite particles showed high catalytic efficiency with an apparent activation energy of about 41.2 k J/mol in the reduction reaction of 4-nitrophenol to 4-aminophenol in the existence of sodium borohydride monitored. The catalytic activity of Au/Ag-NPs multilayer SPBs close to that of Au-NPs SPBs and much higher than that of Ag-NPs SPBs reveals its potential applications in cost-effective catalysts with high-performance. 相似文献
17.
Mechanically stable antireflection and antifogging coatings fabricated by the layer-by-layer deposition process and postcalcination 总被引:1,自引:0,他引:1
Zhang L Li Y Sun J Shen J 《Langmuir : the ACS journal of surfaces and colloids》2008,24(19):10851-10857
Complexes of poly(diallyldimethylammonium chloride) (PDDA) and sodium silicate (PDDA-silicate) are alternately deposited with poly(acrylic acid) (PAA) to fabricate PAA/PDDA-silicate multilayer films. The removal of the organic components in the PAA/PDDA-silicate mulilayer films through calcination produces highly porous silica coatings with excellent mechanical stability and good adhesion to substrates. Quartz substrates covered with such porous silica coatings exhibit both antireflection and antifogging properties because of the reduced refractive index and superhydrophilicity of the resultant films. A maximum transmittance of 99.86% in the visible spectral range is achieved for the calcinated PAA/PDDA-silicate films deposited on quartz substrates. The wavelengths of maximum transmittance could be well tailored by simply changing the deposition cycles of multilayer films. The usage of PDDA-silicate complexes allows for the introduction of high porosity to the resultant silica coatings, which favors the fabrication of antireflection and antifogging coatings with enhanced performance. Meanwhile, PDDA-silicate complexes enable rapid fabrication of thick porous silica coatings after calcination because of the large dimensions of the complexes in solution. The easy availability of the materials and simplicity of this method for film fabrication might make the mechanically stable multifunctional antireflection and antifogging coatings potentially useful in a variety of applications. 相似文献
18.
Kharlampieva E Sukhishvili SA 《Langmuir : the ACS journal of surfaces and colloids》2004,20(24):10712-10717
Using a layer-by-layer sequential adsorption technique, we report the construction of hybrid films in which layers of hydrogen-bonded polymers are embedded within electrostatically associated polyelectrolytes. The components of the hybrid film include a neutral hydrogen-bonding polymer, a weak polycarboxylic acid, and a strong polycation. Depending on the pH value used for the deposition of the electrostatic film, we found two distinctive regimes of film growth. At pHs lower than a critical value, deposition of electrostatic layers occurred on top of hydrogen-bonded stacks to produce hybrid, three-component films. At pHs higher than a critical value, neutral, hydrogen-bonded chains were displaced by the adsorbing chains of the polycation, producing two-component films. The property of the hydrogen-bonded stacks of hybrid films to be selectively dissolved by exposing them to a high pH makes these films promising candidates for producing free polyelectrolyte films. 相似文献
19.
Salomäki M Tervasmäki P Areva S Kankare J 《Langmuir : the ACS journal of surfaces and colloids》2004,20(9):3679-3683
The influence of a variety of counteranions on the properties of polyelectrolyte multilayers deposited by layer-by-layer technique is studied by using ellipsometry and AFM. We found out that in thin dry multilayers (20-90 nm) ofpoly(4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA), the thickness follows reasonably well the position of the counteranion in the Hofmeister series. The polyelectrolyte-counteranion interaction is studied by means of viscosity measurements of semidilute solutions of PDADMA in the presence of different anions. The dynamic viscosities follow the Hofmeister series of anions and correlate with the thickness of multilayers. Two parameters describing the interaction of ions with water, the Jones-Dole viscosity B coefficient and the hydration entropy, are used to explain the anion effect on the developing multilayer thickness. Reasonably smooth and monotonic functional dependence is observed between the layer thickness and these two parameters. 相似文献
20.
Maciej Kubicki Pawe Wagner 《Acta Crystallographica. Section C, Structural Chemistry》2007,63(8):o454-o457
In the crystal structures of the two imidazole derivatives 5‐chloro‐1,2‐dimethyl‐4‐nitro‐1H‐imidazole, C5H6ClN3O2, (I), and 2‐chloro‐1‐methyl‐4‐nitro‐1H‐imidazole, C4H4ClN3O2, (II), C—Cl...O halogen bonds are the principal specific interactions responsible for the crystal packing. Two different halogen‐bond modes are observed: in (I), there is one very short and directional C—Cl...O contact [Cl...O = 2.899 (1) Å], while in (II), the C—Cl group approaches two different O atoms from two different molecules, and the contacts are longer [3.285 (2) and 3.498 (2) Å] and less directional. In (I), relatively short C—H...O hydrogen bonds provide the secondary interactions for building the crystal structure; in (II), the C—H...O contacts are longer but there is a relatively short π–π contact between molecules related by a centre of symmetry. The molecule of (I) is almost planar, the plane of the nitro group making a dihedral angle of 6.97 (7)° with the mean plane of the imidazole ring. The molecule of (II) has crystallographically imposed mirror symmetry and the nitro group lies in the mirror plane. 相似文献