首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Herein, the sorption properties of Eu(III) on Na-attapulgite were performed by using batch sorption experiments under different experimental conditions, such as contact time, pH, ionic strength, humic acid and temperatures. The results indicated that the sorption of Eu(III) on Na-attapulgite was strongly dependent on pH and temperature. At low pH values, the sorption of Eu(III) was influenced by ionic strength, whereas the sorption was not affected by ionic strength at high pH values. The sorption of Eu(III) was mainly dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The sorption of Eu(III) onto Na-attapulgite increased with increasing temperature. The Langmuir and Freundlich models were applied to simulate the sorption isotherms, and the results indicated that the Langmuir model simulated the sorption isotherms better than the Freundlich model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were calculated from the temperature dependent sorption isotherms at 293, 313 and 333 K, respectively, and the results indicated that the uptake of Eu(III) on Na-attapulgite was an endothermic and spontaneous process. The results of high Eu(III) sorption capacity on Na-attapulgite suggest that the attapulgite is a suitable material for the preconcentration and immobilization of Eu(III) ions from large volumes of aqueous solutions.  相似文献   

2.
Batch sorption experiments were performed to remove Eu(III) ions from aqueous solutions by using attapulgite under ambient conditions. Different experimental conditions, such as contact time, solid content, foreign ions, pH, ionic strength, fulvic acid and temperature, have been investigated to study their effect on the sorption property. The results indicated that the sorption of Eu(III) onto attapulgite was strongly dependent on pH, ionic strength and temperature. The sorption increased from about 8.9 to 90% at pH ranging from 2 to 6 in 0.01 mol/L NaNO3 solution. The Eu(III) kinetic sorption on attapulgite was fitted by the pseudo-second-order model better than by the pseudo-first-order model. The sorption of Eu(III) onto attapulgite increased with increasing temperature and decreasing ionic strength. The Langmuir and Freundlich models were used to simulate the sorption isotherms, and the results indicated that the Freundlich model simulated the data better than the Langmuir model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were determined from the temperature dependent isotherms at 298.15, 318.15 and 338.15 K, and the results indicated that the sorption reaction was an endothermic and spontaneous process. The results suggest that the attapulgite is a suitable material as an adsorbent for preconcentration and immobilization of Eu(III) from aqueous solutions.  相似文献   

3.
The bentonite from Gaomiaozi county (Inner Mongolia, China) (denoted as GMZ bentonite) was characterized by X-ray powder diffraction and Fourier transform infrared spectroscopy. The effect of pH, contact time, ionic strength, humic acid (HA) and Eu(III) concentrations on Eu(III) sorption to the GMZ bentonite was studied by batch technique under ambient conditions. The sorption of Eu(III) on GMZ bentonite was strongly dependent on pH and independent of ionic strength. The sorption of Eu(III) on GMZ bentonite was mainly dominated by surface complexation rather than by ion exchange. The presence of HA enhanced Eu(III) sorption at low pH values, but decreased Eu(III) sorption at high pH values. The enhanced sorption of Eu(III) on GMZ bentonite at low pH was attributed to the strong complexation of Eu(III) with surface adsorbed HA on GMZ bentonite and the reduced sorption of Eu(III) at high pH was attributed to the formation of soluble HA–Eu complexes in aqueous solution. The strong sorption of Eu(III) on GMZ bentonite suggested that the GMZ bentonite could be used as the backfill material in nuclear waste disposal.  相似文献   

4.
Attapulgite has been applied in the sorption of metal and radionuclide ions since its discovery. Herein, radionuclide Am(III) sorption onto attapulgite was carried out at 25 °C in 0.01 mol/L NaNO3 solutions. Effects of contact time, Am(III) initial concentration, pH, humic acid and temperature on Am(III) sorption onto attapulgite were investigated. The sorption of Am(III) increases with increasing contact time and reaches a maximum value within 24 h at different Am(III) initial concentration. The fast sorption velocity indicates that strong chemical sorption or strong surface complexation contributes to the sorption of Am(III) onto attapulgite under the experimental conditions. The experimental data can be described well by the pseudo-second-order rate model. The sorption of Am(III) onto attapulgite is strongly dependent on pH values and surface complexation is the main sorption mechanism. The presence of HA enhances the sorption of Am(III) onto attapulgite at pH < 8.5, whereas, at pH > 8.5, little effect of HA on Am(III) sorption is observed. The Langmuir, Freundlich and D-R models were used to simulate the sorption data at different pH values and the results indicated that Langmuir model simulates the experimental data better than Freundlich and D-R models. The thermodynamic parameters indicates that the sorption of Am(III) onto attapulgite is an endothermic and spontaneous process. The results suggest that the attapulgite is a suitable material as an adsorbent for preconcentration and immobilization of Am(III) from aqueous solutions.  相似文献   

5.
Metal ions sorption can be significantly affected by the presence of other sorbates, especially of complexing ligands. In this study, the effect of Se(IV) on Eu(III) sorption onto TiO2 at different pH and Eu(III) concentration was investigated. Se(IV) was found to enhance Eu(III) sorption as a function of Se(IV) concentration. Constant capacitance model was successfully used to interpret the sorption experimental data. The solubility product of Eu2(SeO3)3 at ambient temperature was investigated to highlight the sorption mechanism of ternary sorption system. The pK sp value of Eu2(SeO3)3 was found to be 31.51 ± 0.95.  相似文献   

6.
The sorption of Eu(III) on calcareous soil as a function of pH, humic acid (HA), temperature and foreign ions was investigated under ambient conditions. Eu(III) sorption on soil was strongly pH dependent in the observed pH range. The effect of ionic strength was significant at pH < 7, and not obvious at pH > 8. The type of salt cation used had no visible influence on Eu(III) uptake on soil, however at low pH values, the influence of anions was following the order: Cl ≈ NO3  > ClO4 . In the presence of HA, the sorption edge obviously shifted about two pH units to the lower pH, whilst in range of pH 6–7, the sorption of Eu(III) decreased with increasing pH because a considerable amount of Eu(III) was present as humate complexes in aqueous phase, then increased again at pH > 11. The results indicated that the sorption of Eu(III) on soil mainly formed outer-sphere complexes and/or ion exchange below pH ~7; whereas inner-sphere complexes and precipitation of Eu(OH)3(s) may play main role above pH ~8.  相似文献   

7.
Worldwide argillaceous clays are being studied as promising host rock for nuclear high level waste disposal. Cuddapah argillite is under evaluation for Indian clay rock based repository. Herein characterization of this clay and evaluation for its sorption characteristics towards Cs(I) and Eu(III) has been studied. Surface complexation modeling of Cs(I) sorption on argillaceous clay revealed that Cs(I) is sorbed on high as well as low affinity ion exchange sites. In modeling of Eu(III) sorption data, surface complexes of Eu(III) and europium carbonate species, along with ion exchange reaction, reproduced the sorption profile with ankerite dissolution influencing distribution of various surface complexes.  相似文献   

8.
Bentonite has been studied extensively because of its strong sorption and complexation ability. In this work, the sorption of Se(IV) on purified GMZ bentonite was investigated under ambient temperature as functions of contact time, pH, Se(IV) concentration and co-existing ion Eu(III) using batch techniques. Sorption kinetics of Se(IV) was successfully described by the pseudo-second-order rate equation. The sorption amount of Se(IV) was strongly dependent on the solution pH, and a positive effect was observed on Se(IV) and Eu(III) co-sorption when these two elements existed in the same system under high surface coverage of sorbent. Double layer model was set up and used to quantitatively interpret the sorption experimental data collected in binary and ternary sorption systems. From the experimental results, one can conclude that GMZ bentonite may have good potentialities for immobilizing selenium in nuclear wastes.  相似文献   

9.
In this paper, the attapulgite-iron oxide magnetic composites were synthesized by coprecipitation method and were characterized by SEM, XRD and FTIR in detail. The characterization results indicated that the iron oxide was successfully formed on the surface of attapulgite. The prepared attapulgite-iron oxide magnetic composites were applied as adsorbents to remove Eu(III) from aqueous solutions by using batch sorption experiments under different experimental conditions. The sorption properties of Eu(III) on bare attapulgite were also performed as comparison. The results indicated that the sorption of Eu(III) on attapulgite-iron oxide magnetic composites was strongly dependent on pH and temperature. The attapulgite-iron oxide magnetic composites can be separated from aqueous solutions using magnetic separation method in large scale. At low pH values, the sorption of Eu(III) was influenced by ionic strength and pH obviously, while the sorption of Eu(III) was not affected by ionic strength at high pH values. The sorption of Eu(III) was dominated by ion exchange or outer-sphere surface complexation at low pH values, and mainly by inner-sphere surface complexation at high pH values. The thermodynamic parameters (i.e., ?G °, ?S °, ?H °) calculated from the temperature dependent sorption isotherms indicated that the sorption of Eu(III) on attapulgite-iron oxide magnetic composites was an endothermic and spontaneous process. Although the sorption capacities of Eu(III) on attapulgite-iron oxide magnetic composites were a little lower than those of Eu(III) on bare attapulgite, the magnetic separation in large scale is suitable for the application of the magnetic composites in the preconcentration of Eu(III) from large volumes of aqueous solutions in possible real applications.  相似文献   

10.
Effects of pH, Eu(III) concentration, ionic strength, temperature and humic acid (HA) on Eu(III) sorption to iron oxides were investigated in detail. The sorption of Eu(III) to iron oxides was significantly dependent on pH and weakly dependent on ionic strength, and higher temperature was gainful to Eu(III) sorption. In the presence of HA, Eu(III) sorption was enhanced significantly at low pH; whilst obvious negative effect was observed in higher pH range. Below 12 mg/L HA, HA could obviously enhanced Eu(III) sorption to iron oxides, nevertheless Eu(III) sorption decreased steeply with increasing HA while HA exceeded 12 mg/L. The results were helpful for understanding radionuclides behaviors in natural environment.  相似文献   

11.
The cationic cyclen based Eu(III)-phen conjugated 1.Eu was synthesised as a chemosensor for Cu(II), where the recognition in water at pH 7.4 gave rise to quenching of the Eu(III) luminescence and the formation of tetranuclear polymetallic Cu(II)-Eu(III) macrocyclic complexes in solution where Cu(II) was bound by three 1.Eu conjugates.  相似文献   

12.
Acid-base titrations of oxidized multiwall carbon nanotubes (MWCNTs), Sr(II) and Eu(III) adsorptions onto oxidized MWCNTs were conducted to investigate the surface charge characteristics of oxidized MWCNTs and the surface complexation interactions between Sr(II)/Eu(III) and oxidized MWCNTs. The results suggested that Sr(II) and Eu(III) adsorptions onto oxidized MWCNTs increased with increasing pH, and decreased with increasing ionic strength, and the affinity of oxidized MWCNTs for Eu(III) was much higher than that for Sr(II). The diffuse layer model (DLM) fitted the experimental data of Sr(II) and Eu(III) adsorptions well with the aid of FITEQL 3.2.  相似文献   

13.
Eu(III) adsorption on rutile was investigated as a function of contact time, pH, ionic strength and Eu(III) concentration by using a batch experimental method. The effects of carbonate, sulfate, and phosphate were also studied. It was found that the kinetics of Eu(III) adsorption on rutile could be described by a pseudo-second-order model. The adsorption of Eu(III) on rutile is strongly pH-dependent, but relatively insensitive to ionic strength. A double layer model (DLM) with two inner-sphere Eu(III) surface complexes was applied to quantitatively interpret the adsorption of Eu(III) on rutile. There were no apparent effects of carbonate and sulfate on Eu(III) adsorption, whereas the presence of phosphate promoted Eu(III) adsorption on rutile. The surface complexes of Eu(III) on rutile were evidenced by X-ray photoelectron spectroscopy (XPS).  相似文献   

14.
The sorption species of Eu(III) on γ-Al2O3 and bentonite was investigated by batch, surface complexation model (SCM), and X-ray absorption spectroscopy (XAS). The results showed that sorption edges of Eu(III) on γ-Al2O3 and bentonite were as expected shifted forward high pH with the increasing in Eu(III) concentration, and sorption of Eu(III) was strongly dependent on pH. In γ-Al2O3 system, sorption of Eu(III) was decreased above pH 8.5 at low concentration of Eu(III) because of water soluble carbonate species of Eu(III), however the decline did not appear at high concentration of Eu(III) possibly due to a offset effect of surface precipitation. Actually, the sorption species of Eu(III) on bentonite mainly referred to at least four kinds of species including ion exchange (>X3Eu0) at low pH, inner-sphere complexes (>AlOEu2+ and >SiOEu2+) at neutral condition, and hydrolysis species (>SiOEu(OH) 2 0 ) at alkaline condition. Linear combination fitting (LCF) in k space testified that hydrolysis of Eu(OH)3(s) and oxide of Eu2O3 species were major for Eu(III) sorption on γ-Al2O3, whereas Eu3+(aq) and hydrolysis species comprised sorption species on bentonite. Extended X-ray absorption fine structure (EXAFS) analysis further confirmed the prediction from SCM and LCF. In addition, the typical shells of Eu–Al in R range of 3.0–3.4 Å and Eu–Si at ~4.0 Å were found in radial structure functions, which was possibly identified to edge-shared bidentate of Eu(III) on Al2O3 and bentonite.  相似文献   

15.
Our previously defined Sparkle model (Inorg. Chem. 2004, 43, 2346) has been reparameterized for Eu(III) as well as newly parameterized for Gd(III) and Tb(III). The parameterizations have been carried out in a much more extensive manner, aimed at producing a new, more accurate model called Sparkle/AM1, mainly for the vast majority of all Eu(III), Gd(III), and Tb(III) complexes, which possess oxygen or nitrogen as coordinating atoms. All such complexes, which comprise 80% of all geometries present in the Cambridge Structural Database for each of the three ions, were classified into seven groups. These were regarded as a "basis" of chemical ambiance around a lanthanide, which could span the various types of ligand environments the lanthanide ion could be subjected to in any arbitrary complex where the lanthanide ion is coordinated to nitrogen or oxygen atoms. From these seven groups, 15 complexes were selected, which were defined as the parameterization set and then were used with a numerical multidimensional nonlinear optimization to find the best parameter set for reproducing chemical properties. The new parameterizations yielded an unsigned mean error for all interatomic distances between the Eu(III) ion and the ligand atoms of the first sphere of coordination (for the 96 complexes considered in the present paper) of 0.09 A, an improvement over the value of 0.28 A for the previous model and the value of 0.68 A for the first model (Chem. Phys. Lett. 1994, 227, 349). Similar accuracies have been achieved for Gd(III) (0.07 A, 70 complexes) and Tb(III) (0.07 A, 42 complexes). Qualitative improvements have been obtained as well; nitrates now coordinate correctly as bidentate ligands. The results, therefore, indicate that Eu(III), Gd(III), and Tb(III) Sparkle/AM1 calculations possess geometry prediction accuracies for lanthanide complexes with oxygen or nitrogen atoms in the coordination polyhedron that are competitive with present day ab initio/effective core potential calculations, while being hundreds of times faster.  相似文献   

16.
Amorphous cerium phosphate was prepared and characterized. Three-level Box-Behnken design (BBD) was employed to analyze the effect of process variables such as initial pH (2–6), contact time (60–180 min), and sorbent amount (0.05–0.15 g) on the sorption capacity of europium. Analysis of variance (ANOVA) revealed that the main effect of initial pH and sorbent amount has a substantial impact on the sorption of Eu(III). Probability F-value (F = 3 × 10-3) and correlation coefficient (R2 = 0.97) point out that the model is in good accordance with experimental data. The maximum sorption capacity of Eu(III) was found to be 42.14 mg g-1 at initial pH 6, contact time of 180 min, and a sorbent amount of 0.05 g. Sorption isotherm data was well explained by the Langmuir model and monolayer Eu(III) sorption capacity was obtained as 30.40 mg g-1. Kinetic data were well described by the pseudo-second-order model. Thermodynamic data suggested that the process is endothermic and spontaneous.  相似文献   

17.
Sorption and desorption of radioeuropium on red earth and its solid components to remove organic matter was studied at pH 5.3±0.1 and 4.5±0.1, and in 0.01M and 0.001M NaClO4 solutions, respectively. Eu(III) sorption showed strong pH and humic acid concentration dependency, and NaClO4 concentration independency. The sorption increased with increasing pH and amount of HA adsorbed on red earth. The sorption of Eu(III) on red earth was mainly dominated by surface complexation. Humic acid and high pH had a great tendency to immobilize the movement of Eu(III) in red earth. Sorption-desorption hysteresis of Eu(III) on red earth indicated that the sorption was irreversible.  相似文献   

18.
19.
A new ligand, N,N'-di(pyridine N-oxide-2-yl)pyridine-2,6-dicarboxamide (LH2) and its several lanthanide (III) complexes (La, Eu, Gd, Tb, Y) were synthesized and characterized in detail based on elemental analysis, conductivity measurements, IR, 1H NMR, MS (FAB) and UV spectra and TG-DTA studies. The results indicated that the composition of these binary complexes is [Ln(LH2)(NO3)2.H2O]NO3.nH2O (n=0-1); while the ligand has a good planar structure with strong hydrogen bonds. The fluorescence spectra exhibits that the Tb (III) complex and the Eu (III) complex display characteristic metal-centered fluorescence in solid state while ligand fluorescence is completely quenched. However, the Tb (III) complex displays more effective luminescence than the Eu (III) complex, which is attributed to especial effectivity in transferring energy from the lowest triplet energy level of the ligands (T) onto the excited state (5D4) of Tb (III) than that (5D1) of Eu (III).  相似文献   

20.
The sorption of basic dyes (methylene blue, malachite green, rhodamine B, crystal violet) onto a nonconventional organomineral sorbent-iron humate-was examined in the presence of various kinds of surfactants. It was found that nonionic (Triton X-100) and cationic (cetyltrimethylammonium bromide) surfactants exhibited a relatively small effect on the dye sorption. Anionic surfactants (sodium dodecyl sulfate), on the other hand, affected (in most cases) dramatically the sorption of basic (cationic) dyes. Typically, the dye sorption was enhanced in the presence of low concentrations of anionic surfactants. At high surfactant concentrations, a steep decrease in the dye sorption was observed in some systems, probably due to the formation of micelles that solubilize the dye molecules and prevent their sorption. A model describing these experimental dependencies was proposed. The sorption of basic dyes onto iron humate may be described by the pseudo-second-order kinetic equation. Diffusion processes were identified as the main mechanisms controlling the rate of the dye sorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号