首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Osmotic coefficients of aqueous solutions of lanthanide salts are described using the binding mean spherical approximation (BIMSA) model based on the Wertheim formalism for association. The lanthanide(III) cation and the co-ion are allowed to form a 1-1 ion pair. Hydration is taken into account by introducing concentration-dependent cation size and solution permittivity. An expression for the osmotic coefficient, derived within the BIMSA, is used to fit data for a wide variety of lanthanide pure salt aqueous solutions at 25 degrees C. A total of 38 lanthanide salts have been treated, including perchlorates, nitrates, and chlorides. For most solutions, good fits could be obtained up to high ionic strengths. The relevance of the fitted parameters has been discussed, and a comparison with literature values has been made (especially the association constants) when available.  相似文献   

4.
Asymmetric, potentially pentadentate ligands (H(2)L(3)) are formed by subsequent condensation of a semicarbazide and benzoylhydrazine on 2,6-diacetylpyridine. Two equivalents of H(2)L(3) reacts with CeCl(3).7H(2)O, Ce(SO(4))(2).4H(2)O, or EuCl(3).6H(2)O under formation of [Ln(III)(HL(3))(2)](+) cations (Ln = Ce, Eu) with exclusive deprotonation of the benzoylhydrazone ligand arms. The Ce(4+) ion of the sulfate salt is reduced during the reaction and forms 10-coordinate singly charged complex cations, the structure of which is identical to the product of the reaction of cerium(III) chloride. The exact position of deprotonation in the ligands is resolved by infrared spectroscopy, bond lengths considerations, and the hydrogen bonding in the solid-state structures of the products. A similar approach allows the synthesis of mixed semicarbazone/thiosemicarbazone ligands (H(2)L(4)). The reaction of H(2)L(4) with Sm(NO(3))(3).6H(2)O leads to the first structurally characterized lanthanide complex with thiosemicarbazone coordination. The solid-state structure of the 10-coordinate complex [Sm(HL(4))(2)]NO(3).H(2)O shows exclusive deprotonation of the thiosemicarbazone arms of the ligands. All isolated complexes are air stable and do not undergo ligand exchange reactions or hydrolysis in the presence of water.  相似文献   

5.
Rare earth complexes with organic ligands have been used as luminescence-material usually. Except their luminescent property, the complexes of trivalent lanthanide ions have low toxicity and powerful para-magnetic properties[1,2], so the lanthanide complexes are associated with important biological uses as diag-nostic tools and medicines[36]. Recently, there are some reports on Ce(III) complexes, some of which show anti-cancer activities[7]. S- tetrazines can be used as poly-dentate chelatin…  相似文献   

6.
Aggregation properties of sodium dodecyl sulfate (SDS) in the presence of cerium(III) chloride, at various temperatures (298.15-323.15 K) have been measured by the electrical conductance technique. The experimental data on aqueous solutions as a function of SDS concentration show the presence of two inflexion points indicating the presence of two distinct interaction mechanisms: the first, occurring at SDS concentrations below the critical micelle concentration of the pure surfactant, which can be explained by the formation of aggregates between dodecyl sulfate (DS-) and Ce(III), while the second one, at SDS concentrations around the critical micelle concentration (cmc) of the pure surfactant which is due to the SDS micellization. The aggregation between DS- and Ce(III) was confirmed by static light scattering. The binding ratio of DS-/Ce(III) changes from 6 to 4, shows a slight dependence on the Ce(III) concentration and is independent of the temperature. The thermodynamic micellization parameters, Gibbs energy, enthalpy and entropy of micellization were calculated on the basis of the experimental data for the aggregation concentration, and the degree of counterion dissociation of the micelles. The SDS micellization is energetically favoured by increasing either the concentration of CeCl3 or the temperature. Such behaviour is clearly dominated by a decrease of the micellization (exothermic) enthalpy. The entropy of micellization approaches zero as the cerium(III) chloride concentration and temperature increase.  相似文献   

7.
The platelike crystals of a series of novel molecular conductors, which are based on the pi-donor molecules BDT-TTP (2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene) with a tetrathiapentalene skeleton and lanthanide nitrate complex anions [Ln(NO3)x](3-x)(Ln = La, Ce, (Pr), Tb, Dy, Ho, Er, Tm, Yb, Lu) with localized 4f magnetic moments, were synthesized. Except for the Ce complex, the salts were composed of (BDT-TTP)(5)[Ln(NO(3))(5)] and were isostructural. Even though the Ce crystal had a different composition, (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)(x)() (x approximately 3), the crystals all had the space group P(-)1. Although the X-ray examination of the Pr salts was insufficient, the existence of two modifications was suggested in these systems by preliminary X-ray examination. Previously, we reported the crystal structures and unique magnetic properties of (BDT-TTP)(5)[Ln(NO(3))(5)] (Ln = Sm, Eu, Nd, Gd). Thus, by combining the results of this work with previous one, we for the first time succeeded in obtaining a complete set of organic conductors composed of the identical pi-donors (BDT-TTP in this case) and all the lanthanide nitrate complex anions (except the complex with Pm(3+)). The crystals were all metallic down to 2 K. Electronic band structure calculations resulted in two-dimensional Fermi surfaces, which was consistent with their stable metallic states. Except for the Lu complex, which lacked paramagnetic moments, the magnetic susceptibilities were measured on the six heavy lanthanide ion complex salts by a SQUID magnetometer (Ln = Tb, Dy, Ho, Er, Tm, Yb). The large paramagnetic susceptibilities, which were caused by the paramagnetic moments of the rare-earth ions, were obtained. The Curie-Weiss law fairly accurately reproduced the temperature dependence of the magnetic susceptibilities of (BDT-TTP)(5)[Ho(NO(3))(5)] in the experimental temperature range (2-300 K) and a comparatively large Weiss temperature (|THETAV;|) was obtained (THETAV;(Ho) = -15 K). A Weiss temperature (THETAV;(Tm) = -8 K) was also obtained for Tm. The |THETAV;| values of other (BDT-TTP)(5)[Ln(NO(3))(5)] salts and (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)x(x approximately 3) were as follows: |THETAV;|/K = 4 (Er), < or =2 (Ce, Tb, Dy, Yb). The comparatively strong intermolecular magnetic interaction between Ho(3+) ions, which was suggested by the |THETAV;| value, is inconsistent with the traditional image of strongly localized 4f orbitals shielded by the electrons in the outer 5s and 5p orbitals. The dipole interactions between Ln(3+) ions causing the Curie-Weiss behavior and the comparatively large THETAV; value of (BDT-TTP)(5)[Ho(NO(3))(5)] is inconsistent with the data, since the complexes exhibit isostructural properties and there is not a clear relationship between the magnitudes of THETAV; values and those of magnetic moments. Therefore, it is possible that the 4f orbitals of Ho atom are sensitive to the ligand field, which will have an effect on the orbital moment of the Ho(3+) ion and/or produce a small amount of mixing between 4f and ligand orbitals to give rise to "real" intermolecular antiferromagnetic interaction through intermolecular overlapping between pi (BDT-TTP) and ligand orbitals of lanthanide nitrate complex anions.  相似文献   

8.
The reaction of Ln(NO3)3.aq with K3[Fe(CN)6] or K3[Co(CN)6] in N,N'-dimethylformamide (DMF) led to 25 heterodinuclear [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O and [Ln(DMF)4(H2O)3(mu-CN)Co(CN)5].nH2O complexes (with Ln = all the lanthanide(III) ions, except promethium and lutetium). Five complexes (Pr(3+)-Fe3+), (Tm(3+)-Fe3+), (Ce(3+)-Co3+), (Sm(3+)-Co3+), and (Yb(3+)-Co3+) have been structurally characterized; they crystallize in the equivalent monoclinic space groups P21/c or P21/n. Structural studies of these two families show that they are isomorphous. This relationship in conjunction with the diamagnetism of the Co3+ allows an approximation to the nature of coupling between the iron(III) and the lanthanide(III) ions in the [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O complexes. The Ln(3+)-Fe3+ interaction is antiferromagnetic for Ln = Ce, Nd, Gd, and Dy and ferromagnetic for Ln = Tb, Ho, and Tm. For Ln = Pr, Eu, Er, Sm, and Yb, there is no sign of any significant interaction. The isotropic nature of Gd3+ helps to evaluate the value of the exchange interaction.  相似文献   

9.
New coordination polymers [Ce(C5H4NCOO)3(H2O)2] · 0.5C6H4N2 · 1.5H2O, [Ln(C5H4N-COO)3(H2O)2] (Ln = Ce, Pr) and [Ho(C5H4NCOO)2(H2O)4]NO3, and the tetranuclear complex [Ho4(OH)4(C5H4NCOO)6(H2O)8](NO3)2 · 3.5C6H4N2 · 5H2O were prepared by heating aqueous solutions of lanthanide(III) nitrates with 4-cyanopyridine under conditions of hydro-thermal synthesis. X-ray diffraction study demonstrated that the lanthanide atoms in the coordination polymers are bridged in chains through coordination to the carboxyl group of isonicotinic acid. The metal atoms in the tetranuclear complex are bound in pairs by six bidentate isonicotinate ligands.  相似文献   

10.
Neutral aqueous solutions of cerium ammonium nitrate obtained by dilution of their acetonitrile stock solution with imidazole buffer show high catalytic activity in the hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) and better reproducibility than other similar systems, but suffer from low stability. The kinetics of catalytic hydrolysis is second-order in Ce(IV), independent of pH in the range 5-8 and tentatively involves the Ce2(OH)7+ species as the active form. Attempts to stabilize the active species by different types of added ligands failed, but the use of Ce(IV) complexes pre-synthesized in an organic solvent with potentially stabilizing ligands as precursors of active hydroxo species appeared to be more successful. Three new Ce(IV) complexes, [Ce(Phen)2O(NO3)2], [Ce(tris)O(NO3)(OH)] and [Ce(BTP)2(NO3)4].2H2O (BTP = bis-tris propane, 1,3-bis[tris(hydroxymethyl)methylamino]propane), were prepared by reacting cerium ammonium nitrate with the respective ligands in acetonitrile and were characterized by analytical and spectroscopic techniques. Aqueous solutions of these complexes undergo rapid hydrolysis producing nearly neutral polynuclear Ce(IV) oxo/hydroxo species with high catalytic activity in BNPP hydrolysis. Potentiometric titrations of the solutions obtained from the complex with BTP revealed the formation of Ce4(OH)15+ species at pH > 7, which are protonated affording Ce4(OH)14(2+) and then Ce4(OH)13(3+) on a decrease in pH from 7 to 5. The catalytic activity increases strongly on going to species with a higher positive charge. The reaction mechanism involves first- and second-order in catalyst paths as well as intermediate complex formation with the substrate for higher charged species.  相似文献   

11.
The 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridines (DATPs) belong to a new family of extracting agents recently developed in the framework of nuclear fuel reprocessing. These molecules exhibit exceptional properties to separate actinides(III) from lanthanides(III) in nitric acid solutions. A previous work showed that electrospray ionization mass spectrometry (ESI-MS) is a reliable technique to provide solution data such as stoichiometries and conditional stability constants of various DATP complexes with europium and evidenced the unusual capability of DiPTP [bis(di-iso-propyltriazinyl)pyridine] ligand to form 1:3 complexes in nitric acid solution. This latter result is further investigated by considering DiPTP complexation features with the complete lanthanide family. As a starting point of the experimental procedure used for stability constant evaluation, the intensity distribution of ions detected by ESI-MS is studied for solutions containing Ln(NO(3))(3) in water/methanol (1:1 v/v) with the pH value set at 2.8 and 4.6 by HNO(3) additions. At pH 2.8, the nitrate anions are found to prevent lanthanides from processes occurring within the ion source: redox phenomena or gas-phase reactions with methanol which give species such as [Ln(MeO)(2)](+). Thus, the total intensity of MS signals from [Ln(NO(3))(2)(H(2)O)(p)(MeOH)(n)](+) ions is found proportional to the metal ion concentration. At pH 4.6, with lower nitrate concentration, the nature of the species identified on mass spectra depends on the electronic properties of the lanthanide elements. It is shown that Ln(III) complexation with DiPTP leads to the exclusive formation of 1:3 complexes with the whole lanthanide series which may be due not only to the hydrophobic exterior of the ligand but also to the unusual electronic density distribution in DATP ligands as compared with other aza-aromatic ligands. The conditional stability constants of the 1:3 lanthanide(III) complexes with DiPTP have been determined at pH 2.8 and are found to increase almost regularly from La (log beta(3)(app) = 11.7 +/- 0.1) to Lu (log beta(3)(app) = 16.7 +/- 0.8). Moreover, the kinetic stability of the gas-phase 1:3 complexes obtained by electrospray has been investigated by energy-resolved collision-induced dissociation and provides useful information on the bonding and structure.  相似文献   

12.
The possibility of obtaining cerium dioxide by recovery of Ce(IV) phosphate from acid nitrate solutions with subsequent conversion of Ce(IV) phosphate to Ce(III) oxalate was studied.  相似文献   

13.
The adsorption of the lanthanides (except for Pm) on the zeolite Y was investigated under various solution conditions of nitrate ion concentration ([NO(-)(3)]: 0.001-2 mol/dm(3)) and total lanthanide concentration (from 0.0001 to 0.001 mol/dm(3)). The solutions of the lanthanide nitrates were equilibrated with the zeolite samples at 296 K. The concentrations of lanthanides in the initial and equilibrium solutions were determined by means of spectrophotometrical method with Arsenazo III reagent and distribution constants K(d) of the lanthanides between aqueous and zeolite phases were calculated. The evident concave tetrad effect in the change of logK(d) values (nitrate concentrations 0.4-2 mol/dm(3)) within the lanthanide series was noticed and an attempt at its explanation through the comparison of covalence in LnO bonds existing in triple bond AlO(1/3Ln)Si triple bond species in the zeolite phase and in Ln(NO(3))(2+) complexes forming in the aqueous phase was presented. The weak convex tetrad effect for equilibrium nitrate concentrations 0.001-0.32 mol/dm(3), manifesting in the change of logK(d) values and in the alteration of logK (adsorption constants), is evidence of the complexation of the tripositive lanthanide ions by the oxygens originating both from water molecules and from the zeolite framework.  相似文献   

14.
To better understand the bonding in complexes of f-elements by polydentate N-donor ligands, the complexation of americium(III) and lanthanide(III) cations by 2-amino-4,6-di-(pyridin-2-yl)-1,3,5-triazine (ADPTZ) was studied using a thermodynamic approach. The stability constants of the 1:1 complexes in a methanol/water mixture (75/25 vol %) were determined by UV-visible spectrophotometry for every lanthanide(III) ion (except promethium), and yttrium(III) and americium(III) cations. The thermodynamic parameters (DeltaH degrees , DeltaS degrees) of complexation were determined from the temperature dependence of the stability constants and by microcalorimetry. The trends of the variations of DeltaG degrees , DeltaH degrees , and DeltaS degrees across the lanthanide series are compared with published results for other tridentate ligands and confirm strongly ionic bonding in the lanthanide-ADPTZ complexes. Comparison of the thermodynamic properties between the Am- and Ln-ADPTZ complexes highlights an increase in stability of the complexes by a factor of 20 in favor of the americium cation. This difference arises from a more exothermic reaction enthalpy in the case of Am, which is correlated with a greater degree of covalency in the americium-nitrogen bonds. Quantum chemistry calculations performed on a series of trivalent actinide and lanthanide-ADPTZ complexes support the experimental results, showing a slightly greater covalence in the actinide-ligand bonds that originates from a charge transfer from the ligand sigma orbitals to the 5f and 6d orbitals of the actinide ion.  相似文献   

15.
The infrared signatures of nitric acid HNO3 and its conjugate anion NO3(-) at the surface of an aqueous layer are derived from electronic structure calculations at the HF/SBK+* level of theory on the HNO3 x (H2O)3 --> NO3(-) x H3O(+) x (H2O)2 model reaction system embedded in clusters comprising 33, 40, 45, and 50 classical, polarizable waters, mimicking various degrees of solvation [Bianco, R.; Wang, S.; Hynes, J. T. J. Phys. Chem. A 2007, 111, 11033]. The molecular level character of the various bands is discussed, and the solvation patterns are described in terms of hydrogen bonding and resulting polarization of the species' intramolecular bonds. Connection is made with assorted experimental results, including surface-sensitive Sum Frequency Generation spectroscopy of aqueous nitric acid solutions, infrared spectroscopy of amorphous thin films of nitric acid monohydrate (NAM) and dihydrate (NAD), and infrared and Raman spectroscopic results for bulk aqueous solutions of nitric acid and nitrate salts.  相似文献   

16.
Guo Z  Du F  Li G  Cui Z 《Inorganic chemistry》2006,45(10):4167-4169
Single-crystal cerium hydroxide carbonate (Ce(OH)CO3) triangular microplates with the hexagonal phase have been successfully synthesized by a hydrothermal method at 150 degrees C using cerium nitrate (Ce(NO3)3.6H2O) as the cerium source, aqueous carbamide as both an alkaline and carbon source, and cetyltrimethylammonium bromide (CTAB) as a surfactant. Single-crystal ceria (CeO2) triangular microplates have been fabricated by a thermal decomposition-oxidation process at 650 degrees C for 7 h using single-crystal Ce(OH)CO3 microplates as the precursor. The shape of the Ce(OH)CO3 microplate was sustained after thermal decomposition-oxidation to CeO2. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), differential scanning calorimetric analysis (DSC), and thermogravimetric analysis (TG).  相似文献   

17.
This report covers studies in trivalent lanthanide complexation by two simple cyclohexanetriols that are models of the two coordination sites found in sugars and derivatives. Several complexes of trivalent lanthanide ions with cis,cis-1,3,5-trihydroxycyclohexane (L(1)()) and cis,cis-1,2,3-trihydroxycyclohexane (L(2)()) have been characterized in the solid state, and some of them have been studied in organic solutions. With L(1)(), Ln(L)(2) complexes are obtained when crystallization is performed from acetonitrile solutions whatever the nature of the salt (nitrate or triflate) [Ln(L(1)())(2)(NO(3))(2)](NO(3)) (Ln = Pr, Nd); [Ln(L(1)())(2)(NO(3))H(2)O](NO(3))(2) (Ln = Eu, Ho, Yb); [Ln(L(1)())(2)(OTf)(2)(H(2)O)](OTf) (Ln = Nd, Eu). Lanthanum nitrate itself gives a mixed complex [La(L(1)())(2)(NO(3))(2)][LaL(1)()(NO(3))(4)] from acetonitrile solution while [La(L(1)())(2)(NO(3))(2)](NO(3)) is obtained using dimethoxyethane as reaction solvent and crystallization medium. With L(2)(), Ln(L)(2) complexes have also been crystallized from methanol solution [Ln(L(2)())(2)(NO(3))(2)]NO(3), (Ln = Pr, Nd, Eu). Single-crystal X-ray diffraction analyses are reported for these complexes. Complex formation in solution has been studied for several triflate salts (La, Pr, Nd, Eu, and Yb) with L(1 )()and L(2)(), respectively in acetonitrile and in methanol. In contrast to the solid state, both structures Ln(L) and Ln(L)(2) equilibrate in solution, as was demonstrated by low-temperature (1)H NMR and electrospray ionization mass spectrometry experiments. Competing experiments in complexing abilities of L(1)() and L(2)() with trivalent lanthanide cations have shown that only L(2)() exhibits a small selectivity (Nd > Pr > Yb > La > Eu) in methanol.  相似文献   

18.
19.
A study of the complex formation which occurs between cerium(III) and nitrate ions in aqueous solvent mixtures has been carried out by a direct, low-temperature, nitrogen-15 (15N) NMR technique. At temperatures in the range of –95 to –110°C, ligand exchange is slow enough to permit the observation of separate15N NMR signals for bulk nitrate, and this anion in the cerium(III) principal coordination shell. In water-acetone-Freon-12 mixtures, the spectra reveal the nitrato complexes do not form consecutively. Rather, signals are observed for Ce(NO3)2+, Ce(NO3) 2 1+ , and only two other higher order complexes, even at very high NO 3 to Ce(III) mole ratios. Signal area evaluations were used to identify the possible higher order complexes. At comparable salt concentrations in aqueous-methanol mixtures, only Ce(NO3)2+ and Ce(NO3) 2 1+ are formed, reflecting a decreased tendency for complexation in media of higher dielectric constant.  相似文献   

20.
The solid-liquid equilibrium diagrams of binary mixtures involving magnesium nitrate hexahydrate with cobalt nitrate hexahydrate, nickel nitrate hexahydrate (partly), manganese nitrate tetrahydrate, and iron(III) nitrate nonahydrate and of magnesium chloride hexahydrate with cobalt and nickel chlorides hexahydrates and manganese chloride tetrahydrate, and the of two manganese salts were determined. Those diagrams that showed a simple eutectic were fitted by the Ott equation and where the required BET parameters were available, the magnesium salt rich parts of the liquidus were modeled by means of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号