首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline TiO2 samples with mesoporous structure were prepared via a solvothermal treatment of surfactant-stabilized TiO2 sols. The samples were obtained from media of different acidities including nitric acid, deionized water, and ammonia (denoted as HT-1, HT-2 and HT-3, respectively). These samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2-sorption (BET surface area), micro-Raman spectroscopy, infrared absorption spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples were tested by the self-photosensitized degradation of an azo dye, Mordant Yellow 10 (MY), in aqueous solution under visible light irradiation. The results reveal that all three samples have high surface area and are pure anatase phase. The sample prepared in nitric acid medium possesses the most ideal mesoporous structure and also exhibits a blue shift in the Raman spectrum. All three samples show much higher photocatalytic activity than the commercial P-25. The activity order of the three samples is HT-1>HT-2>HT-3.  相似文献   

2.
何霏  马芳  李涛  李光兴 《催化学报》2013,34(12):2263-2270
采用三种不同的氮源溶剂热合成了锐钛矿-板钛矿混晶的N-TiO2催化剂.采用X射线衍射、N2吸附-脱附、X射线光电子能谱和透射电子显微镜等手段对催化剂进行了表征.重点研究了不同氮源对催化剂的相组成、晶粒尺寸、微观结构以及比表面积的影响.采用紫外光降解气相苯测试了合成材料的催化活性.结果表明,以水合肼为氮源合成的N-TiO2表现出最优的光催化活性,其活性明显高于P25,且能够循环使用15次以上.采用气相色谱-质谱技术分析了光降解过程的中间产物,基于此提出了相应的降解机理.  相似文献   

3.
Nanosized Zn2SnO4 (ZTO) particles were successfully synthesized by a simple hydrothermal process in water/ethylene glycol mixed solution using amines (ethylamine, n-butylamine, n-hexylamine, and n-octylamine) as mineralizer. The products were characterized by X-ray diffractions (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption. The results indicated that the hydrothermal conditions, such as alkaline concentration (n-butylamine), reaction temperature, solvent composition, and the kind of amines, had an important influence on the composition, crystallinity, and morphology of the product. The as-synthesized ZTO samples exhibited high activities and durabilities for photodegradation of methyl orange and the activities were mainly affected by the crystallinities of the samples. A hexagonal-shaped ZTO (H-ZTO) sample was prepared in 0.53 M of n-butylamine solution at 180 °C for 20 h and its optical properties were characterized by UV-Vis diffuse reflectance and Photoluminescence (PL) spectra. Furthermore, the photocatalytic H2 evolution reaction from ethanol aqueous solution over H-ZTO was also investigated.  相似文献   

4.
Based on the unique absorbent characters and three-dimensional network structure of polyacrylamide (PAM) superabsorbent polymer, a photocatalytic degradable TiO2/PAM composite was synthesized by an aqueous solution polymerization method with N,N′-methylene bisacrylamide as crosslinker, potassium peroxydisulfate as initiator, acrylamide as monomer, and TiO2 (P-25) as functional filler. The photocatalytic degradability of the composite was evaluated using methyl orange as photodegradation target, and the recovery and reproducibility of the composite was investigated. It was found that TiO2/PAM composite had a good photocatalytic degradability, the composite also possessed a good reproducibility of photocatalytic degradability, which is possible to be used in practical process.  相似文献   

5.
A novel photocatalytic polyacrylamide grafted TiO2 (PAM-g-TiO2) nanocomposite was prepared and embedded into a low density polyethylene (LDPE) plastic. Photocatalytic degradation of the LDPE/PAM-g-TiO2 composite film was carried out under ambient conditions under ultraviolet light irradiation. The properties of composite film were compared with those of the pure LDPE film by measuring the changes in weight loss, carbonyl index, molecular weight, tensile strength and elongation at break. PAM-g-TiO2 embedded LDPE showed highly enhanced photocatalytic degradation. Irradiating the LDPE/PAM-g-TiO2 composite film for 520 h under UV light reduced its weight by 39.85% and average molecular weight (Mw) by 94.60%, while that of pure LDPE film was only 1.03% and 69.59%, respectively. The addition of PAM-g-TiO2 brought about the good dispersion of TiO2 in LDPE matrix and improved the hydrophilicity of composite film, which were able to facilitate the degradation of LDPE. The photocatalytic degradation mechanism of the films is briefly discussed.  相似文献   

6.
Solid-phase photocatalytic degradation of polystyrene (PS) plastic with TiO2 as photocatalyst was investigated in the ambient air under ultraviolet light irradiation. Higher weight loss rate, lower average molecular weight, increased carbonyl peak intensity, less volatile organics and more CO2 emitted with irradiation in PS-TiO2 composite sample compared to pure PS sample were observed. These facts indicated the higher photodegradation rate of PS-TiO2 sample than that of PS sample, and emphasized the potential of the composite sample in bring about complete photodegradation of polystyrene plastic. It is implied that the degradation initially occurred over TiO2 particles, followed by the diffusion reaction with the aid of reactive oxygen species generated on TiO2 particle surface.  相似文献   

7.
MWCNT/TiO2 hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO2 nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO2 was 20%, MWCNT/TiO2 hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO2 nanostructures at 400 °C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO2 and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue.  相似文献   

8.
TiO2 nanoparticles incorporated with CuInS2 clusters were prepared in a solvothermal process and characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersion X-ray analysis (EDX). Compared with pure TiO2 nanoparticles, the TiO2 nanoparticles incorporated with CuInS2 clusters display higher photocatalytic activity with 99.9% of degradation ratio of 4-nitrophenol after 2 h irradiation. In order to investigate the effect of the CuInS2 clusters on the photocatalytic activity of TiO2 nanoparticles, diffuse reflectance UV–Vis spectra (DRS), photoluminescence (PL) spectra, and photocurrent action spectra were measured. The results indicate that the enhanced photocatalytic activity is probably due to the interface between TiO2 and CuInS2 as a trap of the photogenerated electrons to decrease the recombination of electrons and holes.  相似文献   

9.
A series of dye-modified TiO2 photocatalysts were synthesized using dye Chrysoidine G (CG), tolylene-2,4-diisocyanate (TDI), and commercial TiO2 (Degussa P25) as starting materials. TDI was used as a bridging molecule whose two -NCO groups reacted with Ti-OH of TiO2 and -NH2 groups of CG, respectively. As a result, special organic complexes were formed on the TiO2 surface via stable π-conjugated chemical bonds between TiO2 and dye molecules, confirmed by FT-IR, XPS, and UV-vis spectra. Due to the existence of π-conjugated surface organic complexes, the as-synthesized photocatalysts showed a great improvement in visible absorption (400-550 nm). Methylene blue, as a photodegradation target, was used to evaluate the photocatalytic performance, and the dye-modified TiO2 exhibited much better activity under the visible light irradiation than bare TiO2.  相似文献   

10.
TiO_2因具有多种优异的特性被广泛应用在半导体光催化领域,但是纳米结构的TiO_2颗粒细微,在进行光催化反应之后,难以回收再利用。本文以廉价钛铁矿为原料制备光催化剂TiO_2,同时利用副产物铁合成Fe_3O_4,并采用简单温和的浸渍法制备Fe_3O_4/TiO_2磁性复合材料。通过XRD、FT-IR、SEM、EDS等手段对材料形态结构进行表征分析,并以光降解有机污染物若丹明B为探针反应,考察其光催化性能。结果表明,质量比为1∶10的Fe_3O_4/TiO_2复合材料结构稳定、分散均匀,具有最优的光催化活性(波长356nm下反应3h,若丹明B降解率达到64.0%),并表现出良好的重复性。同时,动力学结果显示降解符合一级反应动力学。  相似文献   

11.
The formation of hollow binary ZrO2/TiO2 oxide fibers using mixed precursor solutions was achieved by activated carbon fibers templating technique combined with solvothermal process. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption, X-ray photoelectron spectroscopy (XPS), UV-vis, and infrared (IR) spectroscopy. The binary oxide system shows the anatase-type TiO2 and tetragonal phase of ZrO2, and the introduction of ZrO2 notably inhibits the growth of TiO2 nanocrystallites. Although calcined at 575 °C, all hollow ZrO2/TiO2 fibers exhibit higher surface areas (>113 m2/g) than pure TiO2 hollow fibers. The Pyridine adsorption on ZrO2/TiO2 sample indicates the presence of stronger surface acid sites. Such properties bring about that the binary oxide system possesses higher efficiency and durable activity stability for photodegradation of gaseous ethylene and trichloromethane than P25 TiO2. In addition, the macroscopic felt form for the resulting materials is more beneficial for practical applications than traditional catalysts forms.  相似文献   

12.
朱翰林  梁况 《化学通报》2016,79(4):327-331,348
由简单的水热法合成了一种可高效降解有机染料的氧缺陷型Sn O2纳米颗粒新型光催化剂,用X射线衍射、透射电镜、高分辨透射电镜和紫外-可见分光光度计等手段对其结构及性能进行了表征。结果表明,所制备的催化剂的禁带宽度最小可达2.90e V,可实现对可见光的有效吸收利用,对甲基橙的降解反应具有很高的光催化活性。将该催化剂(1g/L)分散在10mg/L的甲基橙溶液中,可见光照射下,40min内甲基橙的降解率达99%以上。由于该催化剂具有合成方法简单、高效、成本低和反应条件温和等特点,为有效解决有机染料对环境的污染问题提供了一条新的途径。  相似文献   

13.
Nanocrystalline TiO2 (sample S1) was prepared from a titanium oxo cluster (Ti7O4(OEt)20) precursor via a sol-gel route. This photocatalyst showed a higher photocatalytic activity than the TiO2 (sample S2) obtained from titanium tetraisopropoxide. The samples were characterized by thermal analysis (TGA/DSC), X-ray diffraction, micro-Raman spectroscopy, transmission electron microscopy, N2 adsorption (BET surface area), infrared absorption spectroscopy (FT-IR) and X-ray photoelectron spectroscopy. The characterization results show that both samples are anatase nanocrystals with particle sizes of about 12 nm, but the more photocatalytically active sample S1 has more surface hydroxyl groups and larger surface area and pore volume than sample S2.  相似文献   

14.
A one-step solvothermal synthesis is proposed for the preparation of nanocrystalline single-phase TiO2 in the anatase form doped with lanthanide ions Eu3+, Er3+ and Sm3+. The structural properties of these products have been investigated by using X-ray powder diffraction, electron microscopy and Raman spectroscopy. Furthermore, the laser-excited luminescence spectra of the samples have been measured and analyzed. Following this route, the doping process turns out to be highly favorite and the resulting materials show an efficient luminescence in the visible region.  相似文献   

15.
Commercial TiO2 (Hombikat, UV-100) was impregnated with different loadings of zinc nitrate solution and subsequently calcined at different temperatures in order to obtain a stable homogeneous solid composite of ZnO/TiO2. The prepared samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), UV-vis and Raman spectroscopy, inductively coupled plasma mass spectroscopy (ICP), X-ray photoelectron spectroscopy (XPS) as well as N2 adsorption and desorption measurements. Results show that ZnO was incorporated within the TiO2 crystals and did not form a separate bulky phase or metallic zinc. Moreover, the calcination temperature dramatically modifies the texture properties of the prepared samples compared with original Hombikat TiO2. The photocatalytic performance of the prepared samples was evaluated by monitoring the degradation of methyl orange dye under black light illumination. Three main parameters were studied; ZnO loading, surface area and initial pH of the methyl orange solution. The variation in ZnO loading appears to have less influence on the catalytic activity than either the surface area or the pH.  相似文献   

16.
TiO2/LaFeO3微纳米纤维的可控制备及光催化性能   总被引:1,自引:0,他引:1  
利用静电纺丝技术及水热合成法制备了TiO2/LaFeO3异质结构. 采用场发射扫描电子显微镜(FE-SEM),X射线衍射(XRD),傅里叶变换红外(FTIR)光谱和紫外-可见漫反射光谱(UV-Vis)等手段对TiO2/LaFeO3微纳米纤维的结构和表面形态进行表征. 通过亚甲基蓝(MB)光降解反应研究了其光催化性能. 结果表明,不完全碳化TiO2纤维表面的缺陷位点是LaFeO3纳米粒子的有利生长点. TiO2/LaFeO3异质结材料的带隙明显窄于TiO2,光催化活性得到提高;经140 min紫外光照射后,TiO2/LaFeO3异质结催化剂对MB的降解率为65.34%,分析和探讨了其光催化机理.  相似文献   

17.
TiO2 was immobilized on to the surface of a pyrex glass tube through a dip coating process, and a pyrex glass tube with TiO2 thin film was used as a batch reactor and continuous flow reactor for the photocatalytic destruction of PCE in water. TiO2 could be successfully immobilized with a thickness of 0.3 μm in the pyrex glass tube. The TiO2-immobilized pyrex glass tube itself showed high photocatalytic activity for the destruction of PCE in water.  相似文献   

18.
TiO2 photoelectrodes with various nanostructures have been successfully prepared by the anodization method. The morphology, microstructure and optical properties of as-prepared photoelectrodes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet/visible light diffuse reflectance spectra (UV/vis/DRS), surface photovoltage spectroscopy (SPS) and photocurrent. The electronic structure and optical properties of La doped/undoped TiO2 photoelectrodes with different crystal structures were calculated by the density function theory. The photocatalytic and photoelectrocatalytic activities of as-prepared photoelectrodes were evaluated. The results showed that the anodization potentials played a crucial role in the surface morphology and microstructure. Both results of theoretical calculations and experimental tests demonstrated that La-doped photoelectrodes were more sensitive to light than undoped one. The difference of photoelectrodes performance was ascribed to the crystal configuration, impurity energy levels and long-range orientation moving of photogenerated carriers.  相似文献   

19.
Bi2WO6 powder photocatalyst was prepared using Bi(NO3)3 and Na2WO4 as raw materials by a simple hydrothermal method at 150 °C for 24 h, and then calcined at 300, 400, 500, 600 and 700 °C for 2 h, respectively. The as-prepared samples were characterized with UV-visible diffuse reflectance spectra, fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption measurement. The photocatalytic activity of the samples was evaluated using the photocatalytic oxidation of formaldehyde at room temperature under visible light irradiation. It was found that post-treatment temperature obviously influenced the visible-light photocatalytic activity and physical properties of Bi2WO6 powders. At 500 °C, Bi2WO6 powder photocatalyst showed the highest visible-light photocatalytic activity due to the samples with good crystallization and high BET surface area.  相似文献   

20.
Guangmei Guo  Ping Yu 《Talanta》2009,79(3):570-575
TiO2- and Ag/TiO2-nanotubes (NTs) were synthesized by hydrothermal methods and microwave-assisted preparation, respectively. Scanning electron microscopy, high resolution transmission electron microscopy, Brunauer-Emmett-Teller particle surface area measurement and X-ray diffraction were used to characterize the nanotubes. Rutile TiO2-NTs with Na2Ti5O11 crystallinity had a length range of 200-400 nm and diameters of 10-20 nm. TiO2- and Ag/TiO2-NTs with a 0.4% deposition of Ag had high surface areas of 270 and 169 m2 g−1, respectively. The evaluation of photocatalytic activity showed that Ag/TiO2-NTs displayed higher photocatalytic activity than pure TiO2-NTs and a 60.91% degradation of Rhodamine-B with 0.8% deposition of Ag species. Also 60% of Rhodamine-6G was physisorbed and 40% chemisorbed on the surface of TiO2-NTs. In addition, the photocatalytic degradations of organochlorine pesticides taking α-hexachlorobenzene (BHC) and dicofol as typical examples, were compared using Ag/TiO2-NTs, and found that their degradations rates were all higher than those obtained from commercial TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号