首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The equation of static and dynamic caustics, and the formulae determining the position of crack tip and stress intensity factor are given. It is proven that for the case of low speed of crack propagation the static formula is applicable in calculation. A simple method to measure the static stress-optical constants is proposed. An Optical system which is suitable for the experiments of dynamic caustics was set-up and used to study the fracture in beam and rings with initial crack under impact loading. A series of dynamic caustics' photographs and curves showing the variations of corresponding crack lengths and dynamic stress intensity factors with time, are presented.  相似文献   

2.
Based on the mechanics of anisotropic materials, the dynamic propagation problem of a mode Ⅲ crack in an infinite anisotropic body is investigated. Stress, strain and displacement around the crack tip are expressed as an analytical complex function, which can be represented in power series. Constant coefficients of series are determined by boundary conditions. Expressions of dynamic stress intensity factors for a mode Ⅲ crack are obtained. Components of dynamic stress, dynamic strain and dynamic displacement around the crack tip are derived. Crack propagation characteristics are represented by the mechanical properties of the anisotropic materials, i.e., crack propagation velocity M and the parameter ~. The faster the crack velocity is, the greater the maximums of stress components and dynamic displacement components around the crack tip are. In particular, the parameter α affects stress and dynamic displacement around the crack tip.  相似文献   

3.
In this paper, the isotropic and anisotropic photoelastic experimental hybrid methods for fracture mechanics are developed. Using the photoelastic experimental hybrid method, it is demonstrated that one can precisely obtain stress intensity factors and separate the stress components of isotropic and anisotropic plate problems from the only isochromatics.  相似文献   

4.
给出了混流式转轮叶片与上冠(或下环)采用部分焊透裂纹尖端应力强 度因子的分析模型. 根据给出的模型,结合某电站转轮强度分析结果,通过实际算例,明 确了预留焊缝长度的确定方法. 该方法适用于所有混流式转轮叶片与上冠(或下环)之间 采用部分焊透预留焊缝长度的确定.  相似文献   

5.
The problem considered here is the response of a non-homogeneous composite material containing some cracks subjected to dynamic loading. It is assumed that the composite material is orthotropic and all the material properties depend only on the coordinatey (along the thickness direction). In the analysis, the elastic region is divided into a number of plies of infinite length. The material properties are taken to be constants for each ply. By utilizing the Laplace transform and Fourier transform technique, the general solutions for plies are derived. The singular integral equations of the entire elastic region are obtained and solved by the virtual displacement principle. Attention is focused on the time-dependent full field solutions of stress intensity factor(SIF) and strain energy release rate. As a numerical illustration, the dynamic stress intensity factor of a substrate/functionally graded film structure with two cracks under suddenly applied forces on cracks face are presented for various material non-homogeneity parameters.  相似文献   

6.
三维断裂分析软件FRANC3D   总被引:12,自引:0,他引:12  
介绍了三维断裂分析软件FRANC3D(FRacture ANalysis Codein 3 Dimensions),它和立体对象建模器OSM(Object Solid Modeler)以及边界元系统BES(Boundary Element System)一起构成一套完整的断裂分析系统。该软件可以进行复杂裂纹的应力强度因子计算、自适应裂纹扩展,具有友好的图形用户界面和强大的前后处理功能。本文还给出了两个应用该软件的实例,证明分析是成功的。  相似文献   

7.
横观各向同性材料的三维断裂力学问题   总被引:4,自引:0,他引:4  
陈梦成  张安哥 《力学学报》2006,38(5):612-617
从三维横观各向同性材料弹性力学理论出发, 使用Hadamard有限部积分概念, 导出了三维状态下单位位移间断(位错)集度的基 本解. 在此基础上, 进一步运用极限理论, 将任意载荷作用下, 三维无限大横观各向 同性材料弹性体中, 含有一个位于弹性对称面内的任意形状的片状裂纹问题, 归结为求 解一组超奇异积分方程的问题. 通过二维超奇异积分的主部分析方法, 精确地求得了裂纹前沿光滑点附近的应力奇异指数和奇异应力场, 从而找到了以裂纹表面位移间断表示的应力强度因子表达式及裂纹局部扩展所提供 的能量释放率. 作为以上理论的实际应用,最后给出了一个圆形片状裂纹问题 的精确解例和一个正方形片状裂纹问题的数值解例. 对受轴对称法向均布载荷作用下圆形片状裂纹问题, 讨论了超奇异积分方程的精确求解方法, 并获得了位移间断和应力强度因子的封闭解, 此结果与现有理论解完全一致.  相似文献   

8.
An experimental investigation is conducted on the two-dimensional punch problem for isotropic materials and unidirectional fiber-reinforced composite materials under quasi-static and impact loading. Singular stresses are generated in the specimen near the punch corners, and the stress intensity factorK Iis introduced to describe the singular stress field. Laser interferometry is used to measure in-plane stresses (transmission mode) and out-of-plane displacements (reflection mode) and then estimate the stress intensity factor. In the dynamic case, a high-speed photography technique was employed to capture the transient response of the specimen and measureK(t) just after the impact. In all the cases, a good agreement between the measurements ofK and theoretical predictions was found.  相似文献   

9.
Probability of failure (pf) of a structure is usually calculated for a specified set of statistical parameters (mean, standard deviation, and probability distribution) that characterize random variables. This approach may not be efficient in cases where one would like to know the effect of variations in statistical parameters on the probability of failure. A method based on generating and analyzing randomly selected statistical parameters is proposed. The method consists of generating databases of mean and coefficient of variation (COV = mean/standard deviation) values of relevant fracture mechanics variables through a random process. The method was applied to surface cracks in a flat wide plate loaded under elastic conditions. Probability of failure was calculated for each database record using the first-order reliability method (FORM). Multiple linear regression analyses of the database records were performed with pf as dependent variable and statistical parameters as independent variables. The predicted pf values were in very good agreement with the directly calculated pf values for the specified variations of statistical parameters (±10%, ±15%, and ±20%), except those for fracture toughness and tensile stress, where variations should be limited to ±10% and ±15% ranges.  相似文献   

10.
对于连续截面直梁平面横力弯曲情形, 分析了剪切变形引起横截面翘曲的影响. 基于位移模式假定, 用材料力学方法得到相应的正应力与切应力表达式, 并以均布力作用的矩形截面简支梁为例说明截面翘曲对于应力的影响. 该分析方法及其结果适用于材料力学教学.  相似文献   

11.
Transient thermal dynamic analysis of stationary cracks in functionally graded piezoelectric materials (FGPMs) based on the extended finite element method (X-FEM) is presented. Both heating and cooling shocks are considered. The material properties are supposed to vary exponentially along specific direction while the crack-faces are assumed to be adiabatic and electrically impermeable. A dynamic X-FEM model is developed in which both Crank–Nicolson and Newmark time integration methods are used for calculating transient responses of thermal and electromechanical fields respectively. The generalized dynamic intensity factors for the thermal stresses and electrical displacements are extracted by using the interaction integral. The accuracy of the developed approach is verified numerically by comparing the calculated results with reference solutions. Numerical examples with mixed-mode crack problems are analyzed. The effects of the crack-length, poling direction, material gradation, etc. on the dynamic intensity factors are investigated. It shows that the transient dynamic crack behaviors under the cooling shock differ from those under the heating shock. The influence of the thermal shock loading on the dynamic intensity factors is significant.  相似文献   

12.
Nonclassical problems of fracture and failure mechanics that have been analyzed by the author and his collaborators at the S. P. Timoshenko Institute of Mechanics (Kiev, National Academy of Sciences of Ukraine) during the past forty years are considered in brief. The results of the analysis are presented in a form that would be quite informative for the majority of experts interested in various fundamental and applied aspects of fracture and failure problems including the identification of related mechanisms. This paper was prepared on invitation of the Editorial Board of the journal “Annals. The European Academy of Sciences” and may be considered as an Extended Pascal Medal Lecture (The 2007 Blaise Pascal Medal in Materials Sciences of the EAS) This is an updated edition of the author’s lecture prepared at the invitation of the Annals—The European Academy of Sciences Magazine on the occasion of awarding him the 2007 Blaise Pascal Medal in Materials Sciences by the EAS. The author’s speech at the award ceremony at the General Assembly of the Academy has already been published in International Applied Mechanics [75]. The electronic version of the paper in Annals has been prepared; this issue of Annals is to be published as a book. The paper includes an additional section and extended list of references [4199]. Published in Prikladnaya Mekhanika, Vol. 45, No. 1, pp. 3–40, January 2009.  相似文献   

13.
The coupled elastic and electric fields for anisotropic piezoelectric materials with electrically permeable cracks are analyzed by using Stroh formula in anisotropic elasticity. It is shown from the solution that the tangent component of the electric field strength and the normal component of the electric displacement along the faces of cracks are all constants, and the electric field intensity and electric displacement have the singularity of type (1/2) at the crack tip. The energy release rate for crack propagation depends on both the stress intensity factor and material constants. The electric field intensity and electric displacement inside electrically permeable cracks are all constants.  相似文献   

14.
Material failure by crack propagation essentially involves a concentration of large displacement-gradients near a crack's tip, even at scales where no irreversible deformation and energy dissipation occurs. This physical situation provides the motivation for a systematic gradient expansion of general nonlinear elastic constitutive laws that goes beyond the first order displacement-gradient expansion that is the basis for linear elastic fracture mechanics (LEFM). A weakly nonlinear fracture mechanics theory was recently developed by considering displacement-gradients up to second order. The theory predicts that, at scales within a dynamic lengthscale ℓ from a crack's tip, significant logr displacements and 1/r displacement-gradient contributions arise. Whereas in LEFM the 1/r singularity generates an unbalanced force and must be discarded, we show that this singularity not only exists but is also necessary in the weakly nonlinear theory. The theory generates no spurious forces and is consistent with the notion of the autonomy of the near-tip nonlinear region. The J-integral in the weakly nonlinear theory is also shown to be path-independent, taking the same value as the linear elastic J-integral. Thus, the weakly nonlinear theory retains the key tenets of fracture mechanics, while providing excellent quantitative agreement with measurements near the tip of single propagating cracks. As ℓ is consistent with lengthscales that appear in crack tip instabilities, we suggest that this theory may serve as a promising starting point for resolving open questions in fracture dynamics.  相似文献   

15.
This paper gives the complex stress function of preformed V shape fracture under the blasting load. With Westergaard's method, the stress field and displacement field of preformed V shape fracture tip are derived, and hence its stress intensity factor is obtained. The blasting test result shows that the formulas derived are correct and effective.  相似文献   

16.
Dynamic response for functionally graded materials with penny-shaped cracks   总被引:1,自引:0,他引:1  
This paper provides a method for studying the penny-shaped cracks configuration in functionally graded material(FGM) structures subjected to dynamic or steady loading. It is assumed that the FGMs are transversely isotropic and all the material properties only depend on the axial coordinatez. In the analysis, the elastic region is treated as a number of layers. The material properties are taken to be constants for each layer. By utilizing the Laplace transform and Hankel transform technique, the general solutions for the layers are derived. The dual integral equations are then obtained by introducing the mechanical boundary and layer interface conditions via the flexibility/stiffness matrix approach. The stress intensity factors are computed by solving dual integral equations numerically in Laplace transform domain. The solution in time domain is obtained by utilizing numerical Laplace inverse. The main advantage of the present model is its ability for treating multiple crack configurations in FGMs with arbitrarily distributed and continuously varied material properties by dividing the FGMs into a number of layers with the properties of each layer slightly different from one another. This work was supported by Failure Mechanics Laboratory of State Education Commission and the Post-doctor Research Fund of China.  相似文献   

17.
Summary A simple damage evolution model is proposed for a quasibrittle material in the framework of continuum damage mechanics. The model is used to obtain a closed form solution for a mode-III stationary crack under small scale damage conditions. It is found that the crack tip stress intensity factor is reduced, i.e., the crack is shielded by the damage. However, this shielding effect is completely offset by the material deterioration caused by the damage. It also holds for steady state crack growth. When the most effective shielding is reached for the stationary crack, the zone dominated by the stress intensity factor shrinks to the crack tip. The results for the antiplane shear problem should shed some light on the in- plane fracture problem. Received 4 August 1997; accepted for publication 7 October 1997  相似文献   

18.
19.
A comprehensive treatment of fracture of functionally graded materials (FGMs) is provided. It is assumed that the material properties depend only on the coordinate perpendicular to the crack surfaces and vary continuously along the crack faces. By using a laminated composite plate model to simulate the material non-homogeneity, an algorithm for solving the system based on Laplace transform and Fourier transform techniques is presented. Unlike earlier studies that considered certain assumed property distributions and a single crack problem, the current investigation studies multiple crack problem in the FGMs with arbitrarily varying material properties. Transient thermal stresses are presented. Project supported by the National Natural Science Foundation of China (Nos 10102004 and 19902003).  相似文献   

20.
LONGITUDINALSHEARPROBLEMSOFCOLLINEARRIGIDLINEINCLUSIONSINANISOTROPICMATERIALSJiangcni-ping(蒋持平)(DeparitmentofFlightVehicleDes...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号