首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multilayer films were assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA), deposited in alternation with poly(allylamine hydrochloride) (PAH). The strongly charged groups (styrene sulfonate, SS) are expected to form electrostatic linkages (to enhance film stability), while the weakly charged groups (maleic acid, MA) can alter multilayer film properties because they are responsive to external pH changes. In this study, we varied several assembly conditions such as pH, SS/MA ratio in PSSMA, and the ionic strength of the polyelectrolyte solutions. The multilayer films were also treated by immersion into pH 2 and 11 solutions after assembly. Quartz crystal microgravimetry and UV-visible spectrophotometry showed that the thickness of PSSMA/PAH multilayers decreases with increasing assembly pH regardless of whether salt was present in the polyelectrolyte solutions. When no salt was added, the multilayers are thinner, smoother, and grow less regularly. Atomic force microscopy images indicate that the presence of salt in polyelectrolyte solutions results in rougher surface morphologies, and this effect is especially significant in multilayers assembled at pH 2 and pH 11. When both polyelectrolytes are adsorbed at conditions where they are highly charged, salt was necessary to promote regular multilayer growth. Fourier transform infrared spectroscopy studies show that the carboxylic acids in the multilayers are essentially ionized when assembled from different pHs in 0.5 M sodium chloride solutions, whereas some carboxylic acids remain protonated in the multilayers assembled from solutions with no added salt. This resulted in different pH stability regimes when the multilayers were exposed to different pH solutions, post assembly.  相似文献   

2.
We report the use of copolymers synthesized with specific block ratios of weakly and strongly charged groups for the preparation of stable, pH-responsive multilayers. In this study, we utilized reversible addition-fragmentation chain transfer (RAFT) polymerization in the synthesis of novel pH-sensitive copolymers comprising block domains of acrylic acid (AA) and styrene sulfonate (SS) groups. The PAA x- b-SS y copolymers, containing 37%, 55%, and 73% of AA groups by mass (denoted as PAA 37- b-SS 63, PAA 55- b-SS 45, and PAA 73- b-SS 27, respectively), were utilized to perform stepwise multilayer assembly in alternation with poly(allylamine hydrochloride), PAH. The ratio of AA to SS groups, and the effect of the pH of both anionic and cationic adsorption solutions, on multilayer properties, were investigated using ellipsometry and atomic force microscopy. The presence of SS moieties in the PAA x- b-SS y copolymers, regardless of the precise composition, lead to films with a relatively consistent thickness. Exposure of these multilayers to acidic conditions postassembly revealed that these multilayers do not exhibit the characteristic large swelling that occurs with PAA/PAH films. The film stability was attributed to the presence of strongly charged SS groups. PAA x- b-SS y/PAH films were also formed on particle substrates under various adsorption conditions. Microelectrophoresis measurements revealed that the surface charge and isoelectric point of these core-shell particles are dependent on assembly pH and the proportion of AA groups in PAA x- b-SS y. These core-shell particles can be used as precursors to hollow capsules that incorporate weak polyelectrolyte functionality. The role of AA groups in determining the growth profile of these capsules was also examined. The multilayer films prepared may find applications in areas where pH-responsive films are required but large film swelling is unfavorable.  相似文献   

3.
pH-Sensitive bipolar ion-permselective films of polyelectrolyte multilayers were prepared by layer-by-layer (LbL) assembly and photo-cross-linking of benzophenone-modified poly(acrylic acid) (PAA-BP) and poly(allylamine hydrochloride) (PAH-BP). The multilayer structure and ionizable group composition was finely tuned by changing the pH of the dipping solution. This structure and composition was in turn "preserved" by photo-cross-linking, forming highly stable membrane films. Since PAA-BP and PAH-BP are weak polyelectrolytes, it is possible to control the number of unbound, un-ionized -COOH or -NH2 groups in the multilayer by changing the pH. Moreover, the pH of the deposited film also plays an important role in determining selective latter permselectivity. For example, PAA-BP/PAH-BP multilayers deposited from two pH conditions, pH = 3 (PAA-BP) and pH = 6 (PAH-BP), showed pH-switchable permselectivity for both cationic (pH = 10) and anionic (pH = 3) probe molecules in a single film. The system offers advantages in film stability and introducing reversible selective ion permeability over previous multilayer film and cross-linking methods.  相似文献   

4.
Polymer/Au nanoparticle multilayer ultrathin films are fabricated via hydrogen-bonding interaction by a layer-by-layer technique. The Au nanoparticles surface-modified with pyridine groups of poly(4-vinylpyridine) (PVP) are prepared in dimethyl formamide (DMF). Transmission electron microscopy (TEM) image shows that uniform nanoparticles are dispersed in the PVP chains. Poly(3-thiophene acetic acid) (PTAA) and poly(acrylic acid) (PAA) are utilized to form hydrogen bonds with PVP, respectively. Considering the pH-sensitive dissociation behavior of PTAA and PAA, we investigate the release behavior of the Au-containing multilayers at different pH values in this work. UV-vis spectroscopy and atomic force microscopy (AFM) are employed to monitor the buildup and the release of the multilayers. The results indicate that in the films assembled with gold nanoparticles, the polymers are difficult to be removed from the substrate. The interaction between the gold particles and the neighboring PVP chains is responsible for the phenomenon. Gold particles act as physical cross-link points in the multilayers. Due to the additional interaction caused by the gold nanoparticles in the films except the hydrogen-bonding interaction between PTAA (or PAA) and PVP, the stability of the Au-containing multilayer film is ensured even though the changes in pH values may result in the break of the hydrogen bonds.  相似文献   

5.
Multilayer films were assembled from a strong polyelectrolyte (poly(diallyldimethylammonium chloride), PDADMAC) and a copolymer containing both strongly charged styrene sulfonate moieties and weakly charged maleic acid moieties (poly(4‐styrenesulfonic acid‐co‐maleic acid), PSSMA). Growth of PSSMA/PDADMAC multilayers was linear, as characterized by UV‐vis spectroscopy and quartz crystal microgravimetry. The influence of both the pH of the PSSMA adsorption solutions and the ratio of SS:MA in the PSSMA on multilayer properties was investigated. Fourier transform infrared spectroscopy results showed that the ionization of carboxylic acid groups in PSSMA/PDADMAC multilayers did not vary significantly with changes in the PSSMA assembly pH. However, the multilayers showed different thicknesses, surface morphologies, and stability to post‐assembly pH treatment. We also demonstrate that PSSMA/PDADMAC multilayers are significantly more stable than PSSMA/PAH multilayers after post‐assembly pH treatment (i.e. the films remain intact when exposed to pH extremes). In addition, the surface morphology of two films (PSSMA 1:1 assembled at pH 5.8, post‐treated at pH 2 and PSSMA 3:1 assembled at pH 5.8, post‐treated at pH 11) changed significantly when the films were exposed to solutions of different pH and, in the former case, this change in film morphology was reversible. The porous morphology after treatment at pH 2 could be reversed to give a significantly smoother film after subsequent exposure to water for 24 h. Our results demonstrate that by the rational choice of the assembly pH of PSSMA, stable and pH‐responsive films can be obtained via the sequential assembly of PSSMA and PDADMAC. These films have potential in controlled release applications where film stability and pH‐responsive behavior are essential. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4341‐4351, 2007  相似文献   

6.
Heterostructured magnetic nanotubes   总被引:1,自引:0,他引:1  
Heterostructured magnetic tubes with submicrometer dimensions were assembled by the layer-by-layer deposition of polyelectrolytes and nanoparticles in the pores of track-etched polycarbonate membranes. Multilayers composed of poly(allylamine hydrochloride) and poly(styrene sulfonate) assembled at high pH (pH > 9.0) were first assembled into the pores of track-etched polycarbonate membranes, and then multilayers of magnetite (Fe3O4) nanoparticles and PAH were deposited. Transmission electron microscopy (TEM) confirmed the formation of multilayer nanotubes with an inner shell of magnetite nanoparticles. These tubes exhibited superparamagnetic characteristics at room temperature (300 K) as determined by a SQUID magnetometer. The surface of the magnetic nanotubes could be further functionalized by adsorbing poly(ethylene oxide)-b-poly(methacrylic acid) block copolymers. The separation and release behavior of low molecular weight anionic molecules (i.e., ibuprofen, rose bengal, and acid red 8) by/from the multilayer nanotubes were studied because these tubes could potentially be used as separation or targeted delivery vehicles. The magnetic tubes could be successfully used to separate (or remove) a high concentration of dye molecules (i.e., rose bengal) from solution by activating the nanotubes in acidic solution. The release of the anionic molecules in physiologically relevant buffer solution showed that whereas bulky molecules (e.g., rose bengal) release slowly, small molecules (i.e., ibuprofen) release rapidly from the multilayers. The combination of the template method and layer-by-layer deposition of polyelectrolytes and nanoparticles provides a versatile means to create functional nanotubes with heterostructures that can be used for separation as well as targeted delivery.  相似文献   

7.
Bioinert polyelectrolyte multilayers comprised of poly(acrylic acid) and polyacrylamide were deposited on colloidal particles (1.7 microm in diameter) at low pH conditions by layer-by-layer assembly using hydrogen-bonding interactions. The multilayer films were coated uniformly on the colloidal particles without causing any flocculation of the colloids, and the deposited films were subsequently cross-linked by a single treatment of a carbodiimide aqueous solution. The lightly cross-linked multilayer films show excellent stability at physiological conditions (pH 7.4, phosphate-buffered saline), whereas untreated multilayer films dissolved. The multilayer-coated surfaces, both on flat substrates and on colloidal particles, exhibit excellent resistance toward mammalian cell adhesion. With this new solution-based cross-linking method, bioinert H-bonded multilayer coatings offer potential for biomedical applications.  相似文献   

8.
A series of organized multilayers have been formed by the alternative adsorption of positively charged poly(dimethyldiallylammonium chloride) (PDAC) and purple membrane (PM) fragments in suspensions at pH = 4—11. Both UV-vis spectrophotometry and quartz crystal micro-balance (QCM) technique were used to monitor the deposition process of PDAC/bacteriorhodopsin (bR) multilayers, suggesting that PM fragments and PDAC are deposited alternatively on the substrate uniformly. Upon illumination, all these multilayers generate photovoltages with defined signs. The negative sign of photovoltage accompanying the formation of M-state at pH <7 indicates that the extracellular side of PM fragments is directed toward the substrate; and the positive sign at pH≥7 indicates that the cytoplasmic side of PM fragments is directed toward the substrate. In addition, the long-lived multiple M-state has been observed in all multilayer films. Moreover, M-state at high pH, which shows the longer lifetime than that at low pH, de  相似文献   

9.
In this study, multilayers from polyethylene imine, heparin and chitosan are prepared at three different pH values of 5, 7 and 9. Water contact angle and quartz microbalance measurements show that resulting multilayers differ in terms of wetting behaviour, layer mass and mechanical properties. The multilayer is then formed within a gradient generation microfluidic (μFL) device. Polyethylene imine or heparin solutions of pH 5 are introduced into one inlet and the same solutions but at pH 9 into another inlet of the μFL device. The pH gradient established during the multilayer formation can be visualized inside the microchamber by pH sensitive fluorophores and confocal laser scanning microscopy. From this setup it is expected that properties of multilayers displayed at distinct pH values can be realised in a gradient manner inside the μFL device. Behaviour of the osteoblast cell line MG-63 seeded and cultured on top of multilayers created inside the μFL device support this hypothesis. It is observed that more cells adhere and spread on multilayers build-up at the basic side of the μFL channel, while those cells on top of multilayers built at pH 5 are fewer and smaller. These results are consistent with the behaviour of MG-63 cells seeded on multilayers formed at discrete pH values. It is particularly interesting to see that cells start to migrate from multilayers built at pH 5 to those built at pH 9 during 6 h of culture. Overall, the presented multilayer formation setup applying pH gradients leads to surfaces that promote migration of cells.  相似文献   

10.
Self-assembled multilayer thin films have been prepared on Au substrate by alternate surface derivatization with L-cysteine hydrochloride and cupric perchlorate. The layer-by-layer structure at each step of multilayer formation was investigated by X-ray photoelectron spectroscopy. The measurements indicate that there are two structure modes in the multilayers. One is that Cu(2+) sandwiches between two amino acid groups. The other one is that Cu(+) is bonded through disulfide and thiolate. This process is also confirmed by cyclic voltammetry of Cu ion at different self-assembled multilayers. Steps further on will lead to repeated multilayer films.  相似文献   

11.
This paper describes the fabrication of self-assembled monolayer (SAM) patterns of m-d-poly(ethylene glycol) (m-dPEG) acid molecules onto polyelectrolyte multilayers (PEMs). The patterned SAMs on PEMs were created by ionic interactions using microcontact printing (microCP) technique. The created m-dPEG acid monolayer patterns on PEMs act as resistive templates, and thus further depositions of consecutive poly(anion)/poly(cation) pairs of charged particles result in the formation of three-dimensional (3-D) patterned PEM films or selective particle depositions atop the original multilayer thin films. In this study, we illustrate nonlithographic methods of patterning and controlling 3-D PEM architectures and selective particle depositions. We investigated the effect of variables--the choice of solvent, concentration, pH, substrate pretreatment, and stamp contact times--on microcontact printing of m-dPEG acid molecules onto PEM films to determine the optimal conditions for these parameters to achieve efficient transfer of m-dPEG acid patterns onto PEMs. Among the variables, the pH of the m-dPEG acid ink solution played the most important role in the transfer efficiency of the patterns onto the multilayer films. The patterned films were characterized by optical microscopy and atomic force microscopy (AFM).  相似文献   

12.
不同pH条件下木质素磺酸钠的静电逐层自组装研究   总被引:1,自引:0,他引:1  
以来源于造纸废液中的木质素磺酸钠(SL)为研究对象,利用静电逐层自组装技术,与聚二烯丙基二甲基氯化铵(PDAC)交替吸附,制备木质素磺酸钠的自组装多层吸附膜.研究了不同pH值条件下木质素磺酸钠在固体表面的静电吸附规律.木质素磺酸钠的自组装过程用紫外-可见光吸收光谱来监控,而自组装膜的表面形貌用原子力显微镜来观察.研究表明,SL与PDAC多层吸附膜的紫外-可见光吸收光谱强度随层数增加而线性增长,说明SL/PDAC多层吸附膜的厚度增长是以逐层自组装的方式进行的.木质素磺酸钠浸渍溶液的pH值对多层吸附膜的厚度和表面形貌产生重要的影响.在所研究的pH范围内,pH值越低,越有利于生成吸光度高的自组装膜,而得到的自组装膜的表面粗糙度越大。  相似文献   

13.
The growth of polysaccharide multilayers consisting of positively charged chitosan (CH) and negatively charged heparin (HEP) was monitored in situ by employing a quartz crystal microbalance (QCM-D) and dual-polarization interferometry (DPI). The main focus was on how the physicochemical properties of the solution affect the growth and structure of the resulting multilayer film. These results showed that when increasing the ionic strength of the polysaccharide solutions at a fixed pH, both the "dry" (optical) (DPI) mass and wet (QCM) mass of the adsorbed multilayer film increased. The same effect was found when increasing the pH while keeping the ionic strength constant. Furthermore, the growth of multilayers showed an exponential-like behavior independent of the solution conditions that were used in this study. It was also established that chitosan was the predominant species present in the chitosan-heparin multilayer film. We discuss the viscoelastic properties of the adsorbed layers and their variation during the multilayer buildup. Interestingly and contrary to common interpretation of the QCM-D results, we found that under one particular solution condition (pH 4.2 and 30 mM NaCl) the increase in the dissipation of oscillation energy from the adsorbed layer was a consequence of layer stiffening rather than indicating a more hydrated and viscous film. On the basis of the widely used Voigt viscoelastic model for an adsorbed layer, we show that it is the film viscosity and shear that define the layer viscoelasticity (structure) of the film and not the absolute value of energy dissipation, which in fact can be very misleading.  相似文献   

14.
利用浸泡和旋涂静电吸附自组装技术制备了含有偶氮生色团的聚电解质薄膜,比较了两种方法在自组装膜生长机理、膜结构以及膜光学性能方面的差异.利用紫外光谱和椭偏仪检测自组装膜的生长情况,利用原子力显微镜对膜表面结构进行了表征,并用偏振激光在膜表面进行了写光栅实验.结果表明,采用浸泡法和旋涂法都可以制备出表面光滑均匀的含偶氮生色团的聚电解质自组装膜.但是浸泡法自组装膜的生长速度要比旋涂法快.在自组装膜厚度较小的情况下,旋涂法得到的自组装膜可以写出明显的光栅而浸泡法不可以.随着自组装膜厚度的增加,两种方法得到的自组装膜都可以写出明显的光栅.这些结果说明浸泡法自组装膜内部聚电解质分子的层间穿插比较严重,而旋涂法自组装膜内分子穿插要弱得多.  相似文献   

15.
A catalytic polymer multilayer shell motor has been developed, which effects fast motion‐based separation of charged organics in water. The shell motors are fabricated by sputtering platinum onto the exposed surface of silica templates embedded in Parafilm, followed by layer‐by‐layer assembly of polyelectrolyte multilayers to the templates. The catalytic shell motors display high bubble propulsion with speeds of up to 260 μm s?1 (13 body lengths per second). Moreover, the polyelectrolyte multilayers assembled at high pH (pH>9.0) adsorb approximately 89 % of dye molecules from water, owing to the electrostatic interaction between the positively charged polymers and the anionic dye molecules, and subsequently release them at neutral pH in a microfluidic device. The efficient propulsion coupled with the effective adsorption behavior of the catalytic shell motors in a microfluidic device results in accelerated separation of organics in water and thus holds considerable promise for water analysis.  相似文献   

16.
侧链型偶氮聚电解质自组装和膜结构研究   总被引:5,自引:1,他引:4  
研究了4种侧链型偶氮聚电解质的自组装过程及其对自组装膜结构的影响.用聚电解质上的偶氮基团作为“探针”,研究了自组装过程中出现的生色团取向、解吸附和非线性增长等现象.这些侧链型偶氮聚电解质均具有较好的自组装性,但其自组装行为有很大差异.在不同的pH条件下,聚电解质的电离程度不同,导致吸附过程和自组装膜结构亦明显不同.自组装膜的增长和结构取决于体系中吸附和解吸的平衡.偶氮生色团端基的亲水或疏水性对自组装膜的增长有明显的影响.偶氮聚电解质自组装过程不同阶段出现的非线性增长现象,分别反映了基底、溶液性质和聚电解质结构等因素的影响.  相似文献   

17.
Influence of assembly pH on compression and Ag nanoparticle synthesis of polyelectrolyte multilayers was studied using poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid, 1:1SS:MA) sodium salt (PSSMA 1:1) as the building blocks. The thickest multilayers turned out at pH 4. A homogeneous compression by a silicone rubber stamp increased significantly the water contact angle to a same value which was independent on the original assembly pH anymore. The multilayers assembled at pH 4 could be maximumly compressed to a ratio of 70% by a silicone rubber stamp with linear patterns, which was considerably larger than those assembled at other pHs (the compression ratio ~50%). The Ag nanoparticles were then synthesized inside the multilayers either flat compressed or not. The results showed that the compression reduced significantly the amount of Ag nanoparticles for the multilayers assembled at pH 2 and pH 4. The particle amount was also decreased significantly when the multilayers were assembled at higher pH, pH 6, for example, regardless of the compression. Substantial alteration of the multilayers in terms of the surface morphology, thickness and refractive index was found during the reduction of Ag(+) containing multilayers by NaBH(4) solution.  相似文献   

18.
The growth behavior of all-silica nanoparticle multilayer thin films assembled via layer-by-layer deposition of oppositely charged SiO2 nanoparticles was studied as a function of assembly conditions. Amine-functionalized SiO2 nanoparticles were assembled into multilayers through the use of three different sizes of negatively charged SiO2 nanoparticles. The assembly pH of the nanoparticle suspensions needed to achieve maximum growth for each system was found to be different. However, the surface charge /z/ of the negatively charged silica nanoparticles at the optimal assembly pH was approximately the same, indicating the importance of this parameter in determining the growth behavior of all-nanoparticle multilayers. When /z/ of the negatively charged nanoparticles lies between 0.6z(0) and 1.2z(0) (where z(0) is the pH-independent value of the zeta-potential of the positively charged nanoparticles used in this study), the multilayers show maximum growth for each system. The effect of particle size on the film structure was also investigated. Although nanoparticle size significantly influenced the average bilayer thickness of the multilayers, the porosity and refractive index of multilayers made from nanoparticles of different sizes varied by a small amount. For example, the porosity of the different multilayer systems ranged from 42 to 49%. This study further demonstrates that one-component all-nanoparticle multilayers can be assembled successfully by depositing nanoparticles of the same material but with opposite surface charge.  相似文献   

19.
The azobenzene-containing polyanion PAC-azoBNS was alternately assembled with the polycation diazoresin (DAR) to construct photo-cross-linkable multilayer films of PAC-azoBNS/DAR that contain photolabile groups of azobenzene. Upon mild UV irradiation, the interaction between PAC-azoBNS/DAR multilayers was converted from electrostatic interaction to covalent bonds. Because of the free carboxylic acid groups presented in the film, the photo-cross-linked multilayer film favors the selective permeation of positively charged species. After photolysis of the photo-cross-linked PAC-azoBNS/DAR films with intense UV irradiation, azobenzene groups decompose to produce imine groups, and a photo-cross-linked robust film containing free carboxylic acid and imine groups was fabricated. The resultant film allows the permeation of negatively charged species and meanwhile shows a pH-switchable permselectivity for positively charged species. Because of the covalently cross-linking structure, the photolyzed cross-linked PAC-azoBNS/DAR film shows high reversible switching behavior and has high stability in solution with high ionic strength.  相似文献   

20.
Self-organized multilayer films were formed by sequential addition of oppositely charged cellulose I nanoparticles. The all-cellulosic multilayers were prepared via adsorption of cationicially modified cellulose nanofibrils (cat NFC) and anionic short crystalline cellulose (CNC) at pH 4.5 and pH 8.3. The properties and build-up behavior of layer-by-layer-constructed films were studied with microgravimetry (QCM-D) and the direct surface forces in these systems were explored with colloidal probe microscopy to gain information about the fundamental interplay between cat NFC and anionic CNC. The importance of the first layer on the adsorption of the consecutive layers was demonstrated by comparing pure in situ adsorption in the QCM-D with multilayer films made by spin coating the first cationic NFC layer and then subsequently adsorbing the following layers in situ in the QCM-D chamber. Differences in adsorbed amount and viscoelastic behavior were observed between those two systems. In addition, a significant pH dependence of cat NFC charge was found for both direct surface interactions and layer properties. Moreover the underlying cellulose layer in multilayer film was established to influence the surface forces especially at lower pH, where the cat NFC chains extensions were facilitated and overall charge was affected by the cationic counterpart within the layers. This enhanced understanding the effect of charge and structure on the interaction between these renewable nanoparticles is valuable when designing novel materials based on nanocellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号