首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Hydrogen-bonded gas-phase molecular clusters of dihydrogen trioxide (HOOOH) have been investigated using DFT (B3LYP/6-311++G(3df,3pd)) and MP2/6-311++G(3df,3pd) methods. The binding energies, vibrational frequencies, and dipole moments for the various dimer, trimer, and tetramer structures, in which HOOOH acts as a proton donor as well as an acceptor, are reported. The stronger binding interaction in the HOOOH dimer, as compared to that in the analogous cyclic structure of the HOOH dimer, indicates that dihydrogen trioxide is a stronger acid than hydrogen peroxide. A new decomposition pathway for HOOOH was explored. Decomposition occurs via an eight-membered ring transition state for the intermolecular (slightly asynchronous) transfer of two protons between the HOOOH molecules, which form a cyclic dimer, to produce water and singlet oxygen (Delta (1)O 2). This autocatalytic decomposition appears to explain a relatively fast decomposition (Delta H a(298K) = 19.9 kcal/mol, B3LYP/6-311+G(d,p)) of HOOOH in nonpolar (inert) solvents, which might even compete with the water-assisted decomposition of this simplest of polyoxides (Delta H a(298K) = 18.8 kcal/mol for (H 2O) 2-assisted decomposition) in more polar solvents. The formation of relatively strongly hydrogen-bonded complexes between HOOOH and organic oxygen bases, HOOOH-B (B = acetone and dimethyl ether), strongly retards the decomposition in these bases as solvents, most likely by preventing such a proton transfer.  相似文献   

2.
Investigations of [Ge,Hn]-/0/- (n = 2,3) have been performed using a four-sector mass spectrometer. The results reveal that the complexes HnGe(H2)+ (n = 0,1) play an important role in the unimolecular dissociation of the metastable cations. Theoretical calculations support the experimental observations in most instances, and the established view that the global minimum of [Ge,H2]+ is an inserted structure may need reexamination; CCSD(T,full)/cc-pVTZ//CCSD(T)/6-311 ++ G(d,p) and B3LYP/cc-pVTZ studies of three low-lying cation states (2A1 HGeH+, 2B2 Ge(H2)+ and 2B1 Ge(H2)+) indicate a very small energy difference (ca. 4 kcal mol(-1)) between 2A1 HGeH+ and 2B2 Ge(H2)+; B3LYP favours the ion-molecule complex, whereas coupled-cluster calculations favour the inserted structure for the global minimum. Single-point multireference (MR) averaged coupled-pair functional and MR-configuration interaction calculations give conflicting results regarding the global minimum. We also present theoretical evidence indicating that the orbital-crossing point implicated in the spin-allowed metastable dissociation HGeH+* --> Ge(H2)+* --> Ge+ + H2 lies above the H-loss asymptote. Thus, a quantum-mechanical tunneling mechanism is invoked to explain the preponderance of the H2-loss signal for the metastable ion.  相似文献   

3.
Quantum chemical calculations were applied to investigate the electronic structure of germanium hydrides, Ge(n)H (n = 1, 2, 3), their cations, and anions. Computations using a multiconfigurational quasi-degenerate perturbation approach (MCQDPT2) based on complete active space wave functions (CASSCF), multireference perturbation theory (MRMP2), and density functional theory reveal that Ge(2)H has a (2)B(1) ground state with a doublet-quartet gap of approximately 39 kcal/mol. A quasidegenerate (2)A(1) state has been derived to be 2 kcal/mol above the ground state (MCQDPT2/aug-cc-pVTZ). In the case of the cation Ge(3)H(+) and anion Ge(3)H(-), singlet low-lying electronic states are derived, that is, (1)A' and (1)A(1), respectively. The singlet-triplet energy gap is estimated to 6 kcal/mol for the cation. An "Atoms in Molecules" (AIM) analysis shows a certain positive charge on the Ge(n) (n = 1, 2, 3) unit in its hydrides, in accordance with the NBO analysis. The topologies of the electron density of the germanium hydrides are different from that of the lithium-doped counterparts. On the basis of our electron localization function (ELF) analysis, the Ge-H bond in Ge(2)H is characterized as a three-center-two-electron bond. Some key thermochemical parameters of Ge(n)H have also been derived.  相似文献   

4.
5.
Tautomeric isomers and conformers of 2-nitrovinyl alcohol (1), 2-nitrovinylamine (2), and 1-nitro-propene (3) are reported at the MP2 and B3LYP levels of theory, using the 6-31G* basis set, with energy evaluation at B3LYP/6-311+G** and G2MP2. The nitroalkenes are the global minima on their respective potential energy surfaces. The barriers for the concerted 1,5-H transfer to the corresponding nitronic acids amount to only 5.0 kcal/mol for 1, 13.2 kcal/mol for 2, and a sizable 37.8 kcal/mol for 3. Whereas the aci-nitro tautomer of 2-nitrovinyl alcohol is easily accessible, beta-iminonitronic acid has little kinetic stability. H-bonding is a strong stabilizing factor in these nitroalkenes, estimated at 7.0 and 3.7 kcal/mol for the OH and NH2 derivatives, respectively, while its stabilization in their nitronic acids amounts to as much as 13 kcal/mol. The H-bonds are evident from the very short O...H and N...H distances and are characterized by bond critical points. The NO2 substituent effect of about 11.4 kcal/mol at G2MP2 on both the classical keto <==> enol and imine <==> enamine tautomeric processes stabilizes the nitroethylene derivatives. The keto, imine, and vinyl substituent effects at G2MP2 on the nitro <==> aci-nitro tautomeric process are also determined as are their pi-resonance components. The substituents have a large influence on the ionization energies of the nitroethylene derivatives.  相似文献   

6.
The Raman (3700-100 cm(-1)) and infrared (4000-400 cm(-1)) spectra of solid 2-aminophenol (2AP) have been recorded. The internal rotation of both OH and NH2 moieties produce ten conformers with either Cs or C1 symmetry. However, the calculated energies as well as the imaginary vibrational frequencies reduce rotational isomerism to five isomers. The molecular geometry has been optimized without any constraints using RHF, MP2 and B3LYP levels of theory at 6-31G(d), 6-311+G(d) and 6-31++G(d,p) basis sets. All calculations predict 1 (cis; OH is directed towards NH2) to be the most stable conformation except RHF/6-31++G(d,p) basis set. The 1 (cis) isomer is found to be more stable than 8 (trans; OH is away from the NH2 moiety and the NH bonds are out-of-plane) by 1.7 kcal/mol (598 cm(-1)) as obtained from MP2/6-31G(d) calculations. Aided by experimental and theoretical vibrational spectra, cis and trans 2AP are coexist in solution but cis isomer is more likely present in the crystalline state. Aided by MP2 and B3LYP frequency calculations, molecular force fields, simulated vibrational spectra utilizing 6-31G(d) basis set as well as normal coordinate analysis, complete vibrational assignments for HOC6H4NH2 and DOC6H4ND2 have been proposed. Furthermore, we carried out potential surface scan, to determine the barriers to internal rotations of NH2 and OH groups. All results are reported herein and compared with similar molecules when appropriate.  相似文献   

7.
Ab initio molecular orbital calculation at HF/6-31G*, HF/6-31G**, HF/6-311G**, HF/6-311++G**, RMP2-FC/6-31G*, and B3LYP/6-31G* levels of theory for geometry optimization and MP4(SDQ)/6-31G* for a single point total energy calculation are reported for silabenzene ( 7 ), phosphabenzene ( 8 ) and 16 valence bond isomers of silabenzene and phosphabenzene ( 9-24 ). The calculated energy difference (19.78 kcal mol m 1 ) between silabenzene and the most stable valence bond isomer of silabenzene (1-silabenzvalene, 9 ) is much smaller than the difference (73.60 kcal mol m 1 ) between benzene and benzvalene ( 2 ). The energy difference between phosphabenzene and the most stable valence bond isomer of phosphabenzene (1-phosphabenzvalene, 17 ) is calculated to be 43.29 kcal mol m 1 .  相似文献   

8.
Mechanisms for the deamination reaction of cytosine with H 2O/OH (-) and 2H 2O/OH (-) to produce uracil were investigated using ab initio calculations. Optimized geometries of reactants, transition states, intermediates, and products were determined at MP2 and B3LYP using the 6-31G(d) basis set and at B3LYP/6-31+G(d) levels of theory. Single point energies were also determined at MP2/G3MP2Large and G3MP2 levels of theory. Thermodynamic properties (Delta E, Delta H, and Delta G), activation energies, enthalpies, and free energies of activation were calculated for each reaction pathway investigated. Intrinsic reaction coordinate (IRC) analysis was performed to characterize the transition states on the potential energy surface. Seven pathways for the deamination reaction were found. All pathways produce an initial tetrahedral intermediate followed by several conformational changes. The final intermediate for all pathways dissociates to product via a 1-3 proton shift. The activation energy for the rate-determining step, the formation of the tetrahedral intermediate for pathway D, the only pathway that can lead to uracil, is 115.3 kJ mol (-1) at the G3MP2 level of theory, in excellent agreement with the experimental value (117 +/- 4 kJ mol (-1)).  相似文献   

9.
Substituted isobenzofuranone derivatives 1a-3a and bindone 4 are characterized by the presence of an intramolecular C(Ar)-H···O hydrogen bond in the crystal (X-ray), solution ((1)H NMR and specific and nonspecific IEF-PCM solvation model combined with MP2 and B3LYP methods), and gas (MP2 and B3LYP) phases. According to geometric and AIM criteria, the C(Ar)-H···O interaction weakens in 1a-3a (independent of substituent nature) and in 4 with the change in media in the following order: gas phase > CHCl(3) solution > DMSO solution > crystal. The maximum value of hydrogen bond energy is 4.6 kcal/mol for 1a-3a and 5.6 kcal/mol for 4. Both in crystals and in solutions, hydrogen bond strength increases in the order 1a < 2a < 3a with the rising electronegativity of the ring substituents (H < OMe < Cl). The best method for calculating (1)H NMR chemical shifts (δ(calcd) - δ(expl) < 0.7 ppm) of hydrogen bonded and nonbonded protons in 1a-3a and 1b-3b (isomers without hydrogen bonds) is the GIAO method at the B3LYP level with the 6-31G** and 6-311G** basis sets. For the C-H moiety involved in the hydrogen bond, the increase of the spin-spin coupling constant (1)J((13)C-(1)H) by about 7.5 Hz is in good agreement with calculations for C-H bond shortening and for blue shifts of C-H stretching vibrations (by 55-75 cm(-1)).  相似文献   

10.
采用密度泛函理论B3LYP方法, 在B3LYP/6-311++G(2d,2p)//B3LYP/6-311++G(d,p)基组水平上对乙醇-水分子团簇(C2H5OH(H2O)n (n=1-9))的各种性质进行研究, 如: 优化的几何构型、结构参数、氢键、结合能、平均氢键强度、自然键轨道(NBO)电荷分布、团簇的生长规律等. 结果表明, 从二维(2-D)环状结构到三维(3-D)笼状结构的过渡出现在n=5的乙醇-水分子团簇中. 此外, 利用团簇结合能的二阶差分、形成能、能隙等性质, 发现在n=6时乙醇-水分子团簇的最低能量结构稳定性较好, 可能为幻数结构. 最后, 为了进一步探讨氢键本质, 将C2H5OH(H2O)n (n=2-9)最低能量结构的各种性质与纯水分子团簇(H2O)n (n=3-10)比较, 结果表明前者与后者中的水分子之间氢键相似.  相似文献   

11.
The authors report the first theoretical study on the hexa-atomic molecules CAl(4)X (X=Si,Ge) at the B3LYP/6-311++G(2d), MP2/6-311++G(2d), and CCSD(T)/6-311++G(3df) (single point) levels. Three low-lying isomers (within 2.0 kcal/mol) can be formally viewed as constructed by one Al+ interacting with the planar CAl3X- at the side Al-X bond (X-1), side Al-Al bond (X-2), and central C atom (X-3). The isomers X-1 and X-2 both have planar structures that include the planar tetracoordinate carbon, aluminum, and silicon/germanium, while the three-dimensional isomer X-3 has the pentacoordinate carbon. The planarity of X-1 and X-2 is ascribed to the ligand five-center two-electron bonding molecular orbital, similar to the orbital responsible for the planarity of CAl3X- (X=Si,Ge). Kinetically, the two planar structures X-1 and X-2 can be easily interconverted to each other via the intermediate X-3, indicative of their coexistence. Of particular interest, isomer X-1 represents the first example that simultaneously contains three types of planar centers in a single molecule, to the best of our knowledge. The three low-lying and structurally interesting isomers X-1, X-2, and X-3 await future experimental verification. The present results could enrich the planar chemistry.  相似文献   

12.
The structure, energetics, and vibrational spectra of the (HXeCN)2 dimer were investigated at the CCSD(T), MP2 and B3LYP levels. Such properties of the (HXeCN)3 trimer and (HXeCN)4 tetramer were investigated at the B3LYP level. The dimer, trimer, and tetramer were predicted to have a C2h, C2v, and D2d structure, respectively. In all of these oligomers, the N?Xe intermonomeric interaction is the most important one for holding the monomers together. Included with the ZPVE and BSSE, the stabilization energy of the dimer is 12.36 kcal/mol at the CCSD(T) level, while those of the dimer, trimer, and tetramer are 10.42, 18.23, and 31.34 kcal/mol, respectively, at the B3LYP level. At the B3LYP level, with respect to those of the isolated monomer, the C-Xe and Xe-H asymmetric stretching frequencies are shifted by -11.2 and +128.0 cm(-1) for the dimer, -51.6, +220.7 and -11.5, +96.6 cm(-1) for the trimer, and -14.1 and +201.8 cm(-1) for the tetramer.  相似文献   

13.
The bond dissociation energies for a series of silyl peroxides have been calculated at the G2 and CBS-Q levels of theory. A comparison is made with the O-O BDE of the corresponding dialkyl peroxides, and the effect of the O-O bond strength on the activation barrier for oxygen atom transfer is discussed. The O-O bond dissociation enthalpies (DeltaH(298)) for bis (trimethylsilyl) peroxide (1) and trimethylsilyl hydroperoxide (2) are 54.8 and 53.1 kcal/mol, respectively at the G2 (MP2) and CBS-Q levels of theory. The O-O bond dissociation energies computed at G2 and G2(MP2) levels for bis(tert-butyl) peroxide and tert-butyl hydroperoxide are 45.2 and 48.3 kcal/mol, respectively. The barrier height for 1,2-methyl migration from silicon to oxygen in trimethylsilyl hydroperoxide is 47.9 kcal/mol (MP4//MP2/6-31G). The activation energy for the oxidation of trimethylamine to its N-oxide by bis(trimethylsilyl) peroxide is 28.2 kcal/mol (B3LYP/6-311+G(3df,2p)// B3LYP/6-31G(d)). 1,2-Silicon bridging in the transition state for oxygen atom transfer to a nucleophilic amine results in a significant reduction in the barrier height. The barrier for the epoxidation of E-2-butene with bis(dimethyl(trifluoromethyl))silyl peroxide is 25.8 kcal/mol; a reduction of 7.5 kcal/mol relative to epoxidation with 1. The activation energy calculated for the epoxidation of E-2-butene with F(3)SiOOSiF(3) is reduced to only 2.2 kcal/mol reflecting the inductive effect of the electronegative fluorine atoms.  相似文献   

14.
Ab initio calculations at the MP4(SDTQ)/6-311G//MP2/6-31G level were performed to study the structures and stabilities of the dimer of ethyl cation, (C(2)H(+)(5))(2), and related C(4)H(10)(2+) isomers. Two doubly hydrogen bridged diborane type trans 1 and cis 2 isomers were located as minima. The trans isomer was found to be more favorable than cis isomer by only 0.6 kcal/mol. Several other minima for C(4)H(10)(2+) were also located. However, the global energy minimum corresponds to C-H (C(4) position) protonated 2-butyl cation 10. Structure 10 was computed to be substantially more stable than 1 by 31.7 kcal/mol. The structure 10 was found to be lower in energy than 2-butyl cation 13 by 34.4 kcal/mol.  相似文献   

15.
The heats of formation for the n-alkanes C(n)H(n+2) for n = 5, 6, and 8 have been calculated using ab initio molecular orbital theory. Coupled-cluster calculations with perturbative triples (CCSD(T)) were employed for the total valence electronic energies. Correlation-consistent basis sets were used, up through the augmented quadruple zeta, to extrapolate to the complete basis set limit. Geometries were optimized at the B3LYP/TZVP and MP2/aug-cc-pVTZ levels. The MP2 geometries were used in the CCSD(T) calculations. Frequencies were determined at the density functional level (B3LYP/TZVP), and scaled zero point energies were calculated from the B3LYP frequencies. Core/valence, scalar relativistic, and spin-orbit corrections were included in an additive fashion to predict the atomization energies. The core/valence corrections are not small, (approximately 1.1 kcal/mol per carbon unit) and cannot be neglected for chemical accuracy. The calculated deltaH(298)f values are -35.0, -40.2, and -50.2 kcal/mol for C5H12, C6H14, and C8H18, respectively, in excellent agreement with the respective experimental values of -35.11 +/- 0.19, -39.89 +/- 0.19, and -49.90 +/- 0.31 kcal/mol. Isodesmic reaction energies are presented for some simple reactions involving C8H18 and are shown not to be strongly method dependent.  相似文献   

16.
Density functional theory has been applied at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level to examine the energetics of alpha,beta- versus beta,gamma-unsaturation for some common organic functional groups. Specifically, the relative stabilities of allyl-X (H2C=CHCH2X) and 1-propenyl-X (H3CCH=CHX) isomers have been computed for X = methyl, vinyl, phenyl, formyl, acetyl, methoxy, methylthio, methylsulfinyl, methylsulfonyl, sulfamoyl, and methoxysulfonyl, and the results are compared to available experimental data. The intrinsic preference of 3 kcal/mol for the 1-propenyl isomer when X = CH3 is exceeded by 2-4 kcal/mol for first-row conjugating groups, but it is not met for the sulfur-containing groups. In particular, alpha,beta-unsaturation is favored by less than 1 kcal/mol for the sulfone and sulfonamide analogues, while it is preferred by 8 kcal/mol for the vinyl-substituted case. Detailed structural results and torsional energy profiles are also reported.  相似文献   

17.
The results of a theoretical study of the molecular structure and conformational mobilities of the peroxynitrate CF(2)BrCFBrOONO(2) and its radical decomposition product CF(2)BrCFBrOO are reported in this paper. The most stable structures were calculated from ab initio G3(MP2)B3 and G4(MP2) methods and from density functional theory at the B3LYP/6-311+G(d) and B3LYP/6-311+G(3df) levels of theory. The equilibrium conformation of CF(2)BrCFBrOONO(2) indicates that the bromine atoms lie in position anti to each other and possess a COON dihedral angle of 114°. A quantum statistical analysis shows that about 40% of the internal rotors can freely rotate at room temperature. Our best values for the standard enthalpies of formation of CF(2)BrCFBrOONO(2) and CF(2)BrCFBrOO at 298 K obtained from isodesmic reactions at the G3(MP2)//B3LYP/6-311+G(3df) level of theory are -144.7 and -127.0 kcal mol(-1). From these values and the enthalpy of formation of the NO(2) radical, a CF(2)BrCFBrOO-NO(2) bond dissociation enthalpy of 26.0 ± 2 kcal mol(-1) was estimated.  相似文献   

18.
The structural and vibrational properties of the transition state of the N(2)O + X (X = Cl,Br) reactions have been characterized by ab initio methods using density functional theory. We have employed Becke's hybrid functional (B3LYP), and transition state optimizations were performed with 6-31G(d), 6-311G(2d,2p), 6-311+G(3d,2p), and 6-311+G(3df,2p) basis sets. For the chlorine atom reaction the coupled-cluster method (CCSD(T)) with 6-31G(d) basis set was also used. All calculations resulted in transition state structures with a planar cis arrangement of atoms for both reactions. The geometrical parameters of transition states at B3LYP are very similar, and the reaction coordinates involve mainly the breaking of the N-O bond. At CCSD(T)/6-31G(d) level a contribution of the O-Cl forming bond is also observed in the reaction coordinate. In addition, several highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction energetics. All model chemistries predict exothermic reactions. The G3 and G2 methods result in the smallest deviations from experiment, 1.8 and 0 kcal mol(-1), for the enthalpies of reaction for N(2)O reaction with chlorine and bromine, respectively. The G3//B3LYP and G1 methods perform best among the composite methods in predicting energies of the transition state, with a deviation of 1.9 and 3.0 kcal mol(-1), respectively, in the activation energies for the above processes. However, the B3LYP/6-311+G(3df,2p) method gives smaller deviations of 0.4 and -1.0 kcal mol(-1), respectively. The performance of the methodologies applied in predicting transition state energies was analyzed.  相似文献   

19.
There are two values, -26.0 and -27.7 kcal mol(-1), that are routinely reported in literature evaluations for the standard enthalpy of formation, Delta(f) H(o)(298), of formaldehyde (CH(2)=O), where error limits are less than the difference in values. In this study, we summarize the reported literature for formaldehyde enthalpy values based on evaluated measurements and on computational studies. Using experimental reaction enthalpies for a series of reactions involving formaldehyde, in conjunction with known enthalpies of formation, its enthalpy is determined to be -26.05+/-0.42 kcal mol(-1), which we believe is the most accurate enthalpy currently available. For the same reaction series, the reaction enthalpies are evaluated using six computational methods: CBS-Q, CBS-Q//B3, CBS-APNO, G2, G3, and G3B3 yield Delta(f) H(o)(298)=-25.90+/-1.17 kcal mol(-1), which is in good agreement to our experimentally derived result. Furthermore, the computational chemistry methods G3, G3MP2B3, CCSD/6-311+G(2df,p)//B3LYP/6-31G(d), CCSD(T)/6-311+G(2df,p)//B3LYP/6-31G(d), and CBS-APNO in conjunction with isodesmic and homodesmic reactions are used to determine Delta(f) H(o)(298). Results from a series of five work reactions at the higher levels of calculation are -26.30+/-0.39 kcal mol(-1) with G3, -26.45+/-0.38 kcal mol(-1) with G3MP2B3, -26.09+/-0.37 kcal mol(-1) with CBS-APNO, -26.19+/-0.48 kcal mol(-1) with CCSD, and -26.16+/-0.58 kcal mol(-1) with CCSD(T). Results from heat of atomization calculations using seven accurate ab initio methods yields an enthalpy value of -26.82+/-0.99 kcal mol(-1). The results using isodesmic reactions are found to give enthalpies more accurate than both other computational approaches and are of similar accuracy to atomization enthalpy calculations derived from computationally intensive W1 and CBS-APNO methods. Overall, our most accurate calculations provide an enthalpy of formation in the range of -26.2 to -26.7 kcal mol(-1), which is within computational error of the suggested experimental value. The relative merits of each of the three computational methods are discussed and depend upon the accuracy of experimental enthalpies of formation required in the calculations and the importance of systematic computational errors in the work reaction. Our results also calculate Delta(f) H(o)(298) for the formyl anion (HCO(-)) as 1.28+/-0.43 kcal mol(-1).  相似文献   

20.
Theoretical investigations are performed for the first time on the simplest hydrogenated germanium cyanide [H,Ge,C,N], whose analogs [H,C(2),N] and [H,Si,C,N] have been detected in space and laboratory, respectively. The detailed potential energy surfaces in both singlet and triplet states are constructed at the CCSD(T)/6-311+G(3df,2p)//B3LYP/6-31G(d)+ZPVE level, including 18 minimum isomers and 26 interconversion transition states. The former three low-lying and kinetically stabilized isomers are HGeCN (1)1 (0.0 kcal/mol), HGeNC (1)2 (5.1 kcal/mol), and cyclic cCHNGe(1)7 (11.1 kcal/mol). In addition, five isomers HCNGe (1)3 (33.8), HNCGe (1)5 (29.8), cNHCGe (1)8 (37.9), HGeCN (3)1 (30.1), and HNCGe (3)5 (26.5) each have considerable barriers, despite their high energies. Future laboratory characterization and astrophysical detection of the eight [H,Ge,C,N] isomers, especially the former three low-lying species (1)1, (1)2, and (1)7, are highly recommended. The accurate spectroscopic data at the QCISD/6-311G(d,p) level are provided. For some species, the CBS-QB3 calculations are also performed. Wherever possible, comparisons with the analogous [H,C(2),N] and [H,Si,C,N] are made on the structural, energetic, and bonding properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号