首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
疏水改性凝胶的合成及其药物释放性能的研究   总被引:3,自引:0,他引:3  
以偶氮二异丁腈为引发剂,通过化学引发聚合合成甲基丙烯酸β-羟乙酯(HEMA)/N-乙烯基吡咯烷酮(NVP)二元共聚物和HEMA/NVP/甲基丙烯酸乙酯(或甲基丙烯酸丁酯)三元共聚物水凝胶,研究了凝胶在不同的酸度介质中对小分子药物阿司匹林的释放过程,结果表明,在模拟胃肠道条件下,随着疏水性单体的加入使凝胶的药物释放速率减缓,可实现药物的控制缓释作用。  相似文献   

2.
3.
海藻酸钠水凝胶的制备及其在药物释放中的应用   总被引:6,自引:0,他引:6  
近年来,由于智能水凝胶在药物的控制释放、基因传送、组织工程等领域的应用前景诱人,研究者对智能水凝胶的研究十分活跃。合成类水凝胶常用的单体有丙烯酸及其衍生物、丙烯酰胺及其衍生物等,合成水凝胶具有较好的稳定性,但其生物降解性和生物相容性较差。天然类水凝胶的原料主要有壳聚糖、海藻酸钠、纤维素、淀粉等。由于这些天然多糖具有较好的生物相容性和生物降解性,同时价廉易得,因此,天然类水凝胶在药物控制释放领域更具有优势。海藻酸钠是β-D-甘露糖醛酸(β-D-mannuronic,M)和α-L-古洛糖醛酸(α-L-guluronic,G)按照(1→4)糖苷键连接而成的线型聚合物,每个糖醛酸单元上含有一个羧基,因此,海藻酸钠在中性或碱性条件下呈现聚阴离子电解质的性质。本文综述了海藻酸钠水凝胶的制备方法,包括物理交联法、化学交联法、酶交联法、互穿聚合物网络等;概述了海藻酸钠水凝胶在药物释放中的应用,包括口服给药、皮下给药、黏膜给药、肺部给药、经皮给药等;最后讨论了海藻酸钠水凝胶在研究与应用中存在的问题。  相似文献   

4.
采用1,3-二环己基碳化二亚胺(DCC)为缩合剂,通过β环糊精与丙烯酸的酯化反应合成了不同取代度的丙烯酸β环糊精酯(βCD6A),以此为单体与丙烯酸通过氧化还原自由基引发聚合,合成出了不同交联密度和不同环糊精含量的新型水凝胶(AAβCD6A).溶胀实验表明,该类水凝胶均具有pH敏感性,溶胀动力学实验进一步对其机理进行了探讨.选择苯丁酸氮芥(CHL)作为模型药物,考察了不同pH下AAβCD6A水凝胶对药物释放行为的影响.结果表明,pH=6.8时药物释放率均大于pH=2.0时药物释放率,环糊精的存在表现出促释作用.  相似文献   

5.
水凝胶是一种亲水的三维网络结构,具有良好的生物相容性,可为细胞的迁移生长提供良好的支撑结构,常被用为细胞或药物的载体。然而,传统水凝胶缺乏对外界刺激的响应行为,难以实现在时间和空间上管理药物的释放。本文通过制备聚多巴胺-聚吡咯(PDA-PPy)纳米粒子,并嵌入聚丙烯酰胺/聚(异丙基丙烯酰胺-co-丙烯酸)(PAM/P(NIPAm-co-AAc))水凝胶网络中,制备了具有近红外光响应的黏附水凝胶,并对其拉伸性能、黏附性、NIR药物可控释放性能进行了讨论。结果表明:1)当PDA-PPy-PAM在水凝胶中的含量增加时,水凝胶的延伸比率呈现先增加(从3倍提高到5倍)后减小的趋势,而水凝胶的断裂应力呈现逐渐下降的趋势(从60 kPa减小到30 kPa);2)所制备的水凝胶对玻璃、塑料和人体皮肤等物体表面可形成良好的黏附效果;3)水凝胶的NIR光热转换率受PDA-PPy纳米含量的影响,且随纳米粒子含量增加而提高,当纳米含量为1.8 wt%时,水凝胶在NIR下辐射10 min后,温度可达到45 ℃左右;4)载有四环素的水凝胶在NIR辐射下,其药物释放量逐渐提高(120 min后,达到55%左右的释放),而未被NIR辐射的水凝胶的药物释放量只有5%,且在揭取一段时间释放的药物溶液用于抗菌实验,结果表明水凝胶在NIR辐射40 min所达到的药物浓度,可达到90%以上的抗菌效率,NIR辐射时间增加至120 min的药物量可达到约100%的抗菌效率。  相似文献   

6.
温敏性PCL-PEG-PCL水凝胶的合成、表征及蛋白药物释放   总被引:2,自引:0,他引:2  
考察了温敏性PCL-PEG-PCL水凝胶中聚乙二醇(PEG)及聚己内酯(PCL)不同嵌段组成对其溶胶-凝胶相转变温度以及亲水性药物(牛血清白蛋白, BSA)释放速率的影响. 采用开环聚合法, 以辛酸亚锡为催化剂、PEG1500/PEG1000为引发剂, 与己内酯单体发生开环共聚, 合成了一系列具有不同PEG和PCL嵌段长度的PCL-PEG-PCL型三嵌段共聚物. 通过核磁共振氢谱及凝胶渗透色谱对其组成、结构及分子量进行了表征. 共聚物的溶胶-凝胶相变温度由翻转试管法测定. 利用透射电镜、核磁共振氢谱及荧光探针技术证实了该材料在水溶液中胶束的形成. 以BSA为模型蛋白药物, 制备载药水凝胶, 利用microBCA法测定药物在释放介质中的浓度, 研究其体外释放行为. 实验结果表明, 共聚物的溶胶-凝胶相变温度与PCL及PEG嵌段长度紧密相关, 即在给定共聚物浓度情况下, 固定PEG嵌段长度而增加PCL嵌段长度, 会导致相变温度降低; 而固定PCL嵌段长度而增加PEG嵌段长度, 其相变温度相应升高. 水凝胶中蛋白药物的释放速率与疏水的PCL嵌段长度无关, 而与亲水的PEG嵌段长度密切相关, 即PEG嵌段越长, 蛋白药物释放越快.  相似文献   

7.
通过1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)/N-羟基琥珀酰亚胺(NHS)催化体系使羧甲基壳聚糖(CMCS)交联,制备了新型羧甲基壳聚糖水凝胶.探讨了EDC用量和EDC/NHS质量比对水凝胶特性的影响.CMCS水凝胶具有pH响应特性,在等电位点溶胀率最小.降解实验结果表明,水凝胶浸泡在磷酸盐缓冲溶液中,10 d失重率在15%~45%之间,主要是未交联部分溶解所致.而浸泡在含有0.2 mg/mL溶菌酶的磷酸盐缓冲溶液中,低交联度水凝胶80 h基本降解,高交联度水凝胶不易降解.初步研究了CMCS水凝胶包埋牛血清白蛋白(BSA)的释放行为.  相似文献   

8.
以IRGACURE2959为光引发剂,聚乙二醇双丙烯酸酯(PEGAD)和N-异丙基丙烯酰胺(NIPAM)为单体,通过紫外光引发光聚合,合成了PEGDA/NIPAM共聚物水凝胶,研究了凝胶于不同酸度介质及不同温度中对阿司匹林的释放行为。结果表明,模拟胃肠液中,随释放时间的延长,载药凝胶对药物的累积释放率增加。NIPAM单体的引入增大药物累积释放率,药物缓释时间延长,具有良好的药物释放性能。凝胶对药物的缓释受温度与释放时间的影响,在37℃和45℃时,随释放时间增加,药物累积释放率增大;在30℃时,随释放时间的增长,累积释放率先增大后减小。  相似文献   

9.
温度敏感的PLGA-PEG-PLGA水凝胶的合成、 表征和药物释放   总被引:3,自引:0,他引:3  
用聚乙二醇PEG1000和4600引发乙交酯(GA)和L-丙交酯(L-LA)开环共聚合得到一系列数均分子量为3000~7000的PLGA-PEG-PLGA水凝胶材料. 综合应用动态粘弹谱仪和相图, 系统报道了该凝胶力学性质和溶胶-凝胶转变的关系, 凝胶区间的模量在102~104 Pa之间. 用荧光光谱证明了该三嵌段聚合物形成胶束的性质并测定了临界胶束浓度, 验证了凝胶由胶束形成的机理. 凝胶中的头孢他定释放呈现一定程度的缓释作用.  相似文献   

10.
药物控释体系可改善药物分子在机体内的释放、吸收、代谢和排泄过程,显著提高药物利用率并减弱药物的毒副作用。智能响应型水凝胶凭借其刺激响应性、亲水性和无毒性在药物控释方面得到了广泛的关注。本文介绍了智能响应型水凝胶药物控释体系的概念、机理和应用,详细归纳了智能响应型水凝胶药物控释体系的研究进展。按照刺激源不同将智能响应型水凝胶药物控释体系分为pH响应型、温度响应型、光响应型、生物分子(如葡萄糖、酶)响应型、外场(如电场、磁场)响应型、压力响应型、氧化还原响应型及多重响应型水凝胶药物控释体系。进一步介绍了智能响应型水凝胶药物控释体系在治疗癌症、急性肾损伤、眼病、糖尿病等疾病及抗菌、防止伤口感染等方面的应用。最后,基于目前智能响应型水凝胶药物控释体系存在的一些问题(如生物相容性差、存在突释或滞释现象、不可降解等)对其发展做出了展望。  相似文献   

11.
通过N-乙烯基吡咯烷酮(N-vinyl pyrrolidone, NVP)在聚己内酯(polycaprolactone, PCL)、聚乳酸(poly(lactic acid),PLA)乙酸乙酯溶液中自由基聚合,制得聚乙烯吡咯烷酮(Polyvinylpyrrolidone, PVP)/聚己内酯、聚乳酸半互穿网络(semi-interpenetrating network, semi-IPN)水凝胶(PVP-semi-IPN-PCL/PLA)。实验制得疏水/亲水比例分别为1∶9、3∶7、5∶5的三种水凝胶。采用溶剂挥发法制备卡马西平-丁二酸药物共晶(carbamazepine-succinic acid, CBZ-SUC)。使用PVP-semi-IPN-PCL/PLA负载CBZ-SUC共晶,考察上述三种凝胶药物载体的载药能力及体外释放行为。使用1∶9、3∶7、5∶5比例凝胶制备了载药量分别为17%、19%、21%,包封率分别为71%、83%、89%的载药凝胶,其在37℃,pH=6.8 PBS溶液中体外释放效果均优于未使用凝胶载体的CBZ-SUC共晶。其中,3∶7组载药凝胶的累积释放量最高,...  相似文献   

12.
无外相的葡聚糖凝胶的合成   总被引:2,自引:0,他引:2  
本文研究了无外相的葡聚糖凝胶的合成方法以及有关的催化剂用量,糖液浓度,反应时间,反应温度,交联剂用量和不同分子量的葡聚糖与合成凝胶的性能关系,并确定了最佳反应条件,从而制得了性能类似国外同类产品Sephadex的凝胶。  相似文献   

13.
以氧化葡聚糖(ODEX)和聚赖氨酸-聚乙二醇-聚赖氨酸(PLL24-PEG-PLL25)三嵌段聚合物为前驱体, 通过ODEX中的醛基与PLL中的氨基之间的席夫碱键反应, 制备了ODEX/PLL24-PEG-PLL25水凝胶. 研究了其凝胶强度、 降解时间及对阿霉素(DOX)释放量的影响. 结果表明, 随着ODEX中醛基密度的增加, 凝胶强度逐渐增大, 最大强度为3100 Pa. 流变学研究结果表明, 由于ODEX中的醛基与DOX中的氨基存在席夫碱键作用, 导致凝胶强度从2160 Pa降至1730 Pa. 降解实验结果表明, ODEX/PLL24-PEG-PLL25水凝胶具有较长的降解时间, 最长时间达到29 d. 药物释放结果表明, ODEX/PLL24-PEG-PLL25水凝胶具有酶促降解释放药物的性能. 在Elastase溶液中, ODEX/PLL24-PEG-PLL25水凝胶所载DOX累积释放量达到最大值74.35%. 结果表明, ODEX/PLL24-PEG-PLL25水凝胶具有进一步应用于体内局部药物传输的潜力.  相似文献   

14.
羧甲基壳聚糖含有丰富的羧基和氨基, 通过1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)共催化交联羧甲基壳聚糖形成新型水凝胶. 调节EDC/NHS用量, 制备不同交联度的羧甲基壳聚糖水凝胶(CMCS hydrogels). 研究水凝胶的流变行为, 结果表明, 高交联度的水凝胶具有较好的弹性形变能力, 较高的储存模量, 这是因为随着交联度的升高, 羧甲基壳聚糖水凝胶化学交联网络结构趋于完善. 以胸腺五肽(TP-5)为模型药物, 初步评价CMCS水凝胶药物释放行为, 结果表明水凝胶交联度越高, 胸腺五肽释放速度越慢. MTT法初步评价了水凝胶细胞毒性, 细胞形态和细胞相对增值速率, 结果表明水凝胶毒性很低. 由此可见, 水凝胶具有良好的生物相容性, 在药物缓释和组织工程领域具有广阔的应用前景.  相似文献   

15.
杨晓慈  任杰  姚萌奇  张晓燕  杨武 《应用化学》2014,31(10):1143-1148
以壳聚糖(Cs)和丙烯酸(AA)为原料,利用自由基聚合法制备了具有孔洞结构的复合水凝胶Cs-PAA,并研究了AA的量、交联剂的量、聚合温度和AA的中和度对水凝胶溶胀度的影响以及复合水凝胶对烟酸的控制释放。 结果表明,Cs-PAA复合水凝胶具有良好的pH值、离子强度敏感性,且溶胀度最高达1228 g/g,其在pH=686的缓冲溶液中的烟酸累积释放率明显大于其在pH=1.80的缓冲溶液,因此Cs-PAA水凝胶可作为肠口服药物的载体。  相似文献   

16.
水凝胶及其在药物控释体系上的应用   总被引:11,自引:0,他引:11  
智能水凝胶作为药物载体有着良好的应用前景。人体环境中存在一些变化的因素,如温度、pH。因此,温度敏感性水凝胶和pH敏感性水凝胶可用于药物在人体中的控释体系。本文主要介绍水凝胶材料的种类以及智能水凝胶在药物控释体系上的应用。  相似文献   

17.
温敏水凝胶   总被引:21,自引:2,他引:21  
概述了近十多年来对温敏水凝胶的研究及近期的发展,对有关现象进行了解释和说明,并提及了有关方面的应用。  相似文献   

18.
低分子量的有机胶凝剂组装形成的有机凝胶可应用于药物缓释体系.本研究中,使用亲水的钙黄绿素和疏水的布洛芬为模型分子,研究其在谷氨酸衍生物有机凝胶体系中的缓释行为.研究表明,与药物分子与有机胶凝剂简单混合的体系相比,亲水或疏水的药物分子在有机凝胶体系中的释放速度显著减缓.SEM的研究发现药物粒子嵌入在有机凝胶的三维网络中,因此,有机凝胶的三维网络结构可认为是实现药物缓慢释放的基质,药物分子从网络中的释放受限导致了其从有机凝胶中的缓释行为.  相似文献   

19.
在合成聚N,N-二乙基丙烯酰胺温敏水凝胶的基础上研究了该水凝胶在LCST附近对高物的释物(以氟哌酸为主),温度与交联度的变化对药物的释放皆有明显的影响。通过对释放曲线进行计算机模拟得到释放液浓度的经验公式,并从理论上初步解释了公式中各参数物物理意义。作出了理论近似计算得到的表观扩散系数的变化曲线,并在LCST附近各温度的变化趋势符合预测。  相似文献   

20.
智能性水凝胶   总被引:26,自引:0,他引:26  
“智能”材料具有传感、处理和执行功能,水凝胶作为智能材料其应用前景良好。本文综述了智能水凝胶的近期研究发展,以Flory的溶胀理论着重探讨了刺激响应性,并介绍了化学机械现象及凝胶相转变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号