首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The density functional theory (DFT) B3LYP method is used to theoretically investigate the interaction of O2 with the β-Si3N4 surface (0 0 0 1) at 1200 °C. All the calculations have been performed at the 6-31G basis set level using H-saturated cluster. From the total energy minimization, the chemisorption on the center of the molecule lying above an Si site and the molecular axis paralleling to the surface is the most stable. After adsorption, the O–O bond is easier to dissociate compared to the free O2. The electron transferred from the substrate to the O2 molecule occupies the O2 anti-bonding orbital, thus leading to a weakening off the bond strength, which is reflected by the elongated O2 bond length. The changing trend of the O–O population and vibrational frequency is consistent with the change of the O–O bond length. The significant chemisorption energy and the short adsorption bond length indicate that the oxidation occurs on the β-Si3N4(0 0 0 1) surface at 1200 °C more easily.  相似文献   

2.
The low-temperature structures of the colquiriite-type fluorides LiCaAlF6 and LiSrAlF6 have been investigated by single crystal X-ray diffraction. Molecular orbital calculations were also carried out using cluster models based on the obtained structures. The crystallographic c-axis at 120 K in LiSrAlF6 became slightly elongated with respect to the 300 K lattice and the structure became more distorted. In contrast, there was uniform lattice parameter contraction in LiCaAlF6 and the structure changed minimally between 300 and 120 K. These structural variations support other studies of temperature dependent optical properties reported in the literature.  相似文献   

3.
Pathways for the rearrangement and decomposition of the (CH3)3M+ (M = Si, Ge, Sn) ions are traced by the detection of stationary points on the potential energy surfaces of these ions by the B3LYP/aug-cc-pVDZ method. All three systems have stationary points similar in geometry, but very different in energy, especially on going from M = Si, Ge on the one hand to M = Sn on the other. In addition to previously found isomers of (CH3)3Si+ which have their analogs in the two other systems, “side-on” complexes with ethane and propane were revealed for all cations studied. Predicted changes in transition state and dissociation energies on going from M = Si to M = Sn allowed us to rationalize the trends for the relative decomposition product yields observed in mass-spectrometry studies of these cations.  相似文献   

4.
The structure, stability, and thermochemistry of the H(MF3)+ isomers (M = N-Bi) have been investigated by MP2 and coupled cluster calculations. All the HF-MF2+ revealed weakly bound ion-dipole complexes between MF2+ and HF. For M = N, As, Sb, and Bi they are more stable than the H-MF3+ covalent structures (free energy differences) by 6.3, 14.3, 32.1, and 73.5 kcal mol−1, respectively. H-PF3+ is instead more stable than HF-PF2+ by 21.8 kcal mol−1. The proton affinities (PAs) of MF3 at the M atom range from 91.9 kcal mol−1 (M = Bi) to 156.5 kcal mol−1 (M = P), and follow the irregular periodic trend BiF3 < SbF3 < AsF3 < NF3 < PF3. The PAs at the F atom range instead from 131.9 kcal mol−1 (M = P) to 164.9 kcal mol−1 (M = Bi), and increase in the more regular order PF3 ≈ NF3 < AsF3 < SbF3 < BiF3. This trend parallels the fluoride-ion affinities of the MF2+ cations. For protonated NF3 and PF3, the calculations are in good agreement with the available experimental results. As for protonated AsF3, they support the formation of HF-AsF2+ rather than the previously proposed H-AsF3+. The calculations indicate also that the still elusive H(SbF3)+ and H(BiF3)+ should be viable species in the gas phase, exothermically obtainable by various protonating agents.  相似文献   

5.
Ph2SiCl2 and PhMeSiCl2 react with Li2E (E = S, Se, Te) under formation of trimeric diorganosilicon chalcogenides (PhRSiE)3 (R = Ph: 1a-3a, R = Me: cis/trans-4a (E = S), cis/trans-5a (E = Se)). In case of E = S, Se dimeric four-membered ring compounds (PhRSiE)2 (R = Ph: 1b-2b, R = Me: cis/trans-4b (E = S), cis/trans-5b (E = Se)) have been observed as by-products. 1a-5b have been characterized by multinuclear NMR spectroscopy (1H, 13C, 29Si, 77Se, 125Te). Four- and six-membered ring compounds differ significantly in 29Si and 77Se chemical shifts as well as in the value of 1JSiSe.The molecular structures of 2a, 3a and trans-5a reported in this paper are the first examples of compounds with unfused six-membered rings Si3E3 (E = Se, Te). The Si3E3 rings adopt twisted boat conformations. The crystal structure of 3a reveals an intermolecular Te-Te contact of 3.858 Å which yields a dimerization in the solid state.  相似文献   

6.
Several cobalt(II) phosphine complexes have been synthesized by reacting cobalt(II) chloride with various mono- and diphenylalkylphosphines (PRxPh3 − x; R = methyl, ethyl, allyl, propyl, isopropyl, cyclohexyl; x = 1, 2). For some of these complexes single crystals were obtained and their molecular structure, were determined by X-ray diffraction method. All the complexes were then used in association with MAO for the polymerization of 1,3-butadiene and they were found to be extremely active. Predominantly 1,2 polymers having different tacticity (predominantly iso- or syndiotactic), depending on the type of phosphine ligand bonded to the cobalt atoms were obtained. An interpretation of this particular behavior, based on the diene polymerization mechanism previously proposed, is reported.  相似文献   

7.
The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet germylene carbene and acetone has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD (T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the dominant reaction pathway of the cycloadditional reaction of forming germanic bis-heterocyclic compound consists of three steps: (1) the two reactants firstly form an intermediate INT4 through a barrier-free exothermic reaction of 181.4 kJ/mol; (2) INT4 further reacts with acetone (R2) to form an intermediate (INT5), which is also a barrier-free exothermic reaction of 148.9 kJ/mol; (3) INT5 then isomerizes to a germanic bis-heterocyclic product P5 via a transition state TS5 with an energy barrier of 53.3 kJ/mol.  相似文献   

8.
The rate constants of the hydrogen abstraction reactions of CF3CHFCF3 + H (R1) and CF3CF2CHF2 + H (R2) have been calculated by means of the dual-level direct dynamics method. Optimized geometries and frequencies of stationary points and extra points along the minimum-energy path (MEP) are obtained at the MPW1K/6-311+G(d,p) level, and the classical energetic information is further corrected with the interpolated single-point energy (ISPE) approach by the G3(MP2) level of theory. Using the canonical variational transition state theory (CVT) with small-curvature tunneling corrections (SCT), the rate constants are evaluated over a wide temperature range of 200-2000 K. The calculated CVT/SCT rate constants are in good agreement with available experimental values. It is found that the variational effect is very small and almost negligible over the whole temperature region. However, the small-curvature tunneling correction plays an important role in the lower temperature range. Furthermore, the heats of formation of species CF3CF2CHF2 (SC1 or SC2) and CF3CF2CF2 are studied using isodesmic reactions to further elucidate the thermodynamic properties.  相似文献   

9.
With various concentrations of CaCl2 and MgCl2 aqueous solution below 1.0 mol/l, Raman spectra of water in the OH stretch region of 2500-4000 cm−1 and 17O NMR chemical shift of water are measured and the Raman spectra are deconvoluted. Both Raman spectra and 17O NMR of water show that the effect of Ca2+ on water structure is stronger than that of Mg2+. CaCl2 and MgCl2 destroy four hydrogen bonded water structure, but promote median water cluster size.  相似文献   

10.
When the polycyclic alumosiloxane [Ph2SiO]8[AlO(OH)]4 is allowed to react with either cyclopentadienyl sodium in tetrahydrofuran or with dimethyl zinc in diethyl ether the organic ligands on the metal elements are eliminated as cyclopentadiene or methane and the metals are bonded to oxygen atoms in the alumosiloxane forming [Ph2SiO]8[AlO2(Na)]4 · 5(THF) or [Ph2SiO]8[AlO(OH)]2[AlO2]2[Zn(OH)]2 · 2(OEt2), respectively. X-ray structure determinations reveal that in the sodium derivative the original polycycle rests almost unchanged while in the zinc derivative the inner skeleton is rearranged.  相似文献   

11.
12.
Based on first-principles electronic structure calculations we find that the bridging oxygen vacancies on the (1 1 0) surface is more favorable and may be responsible for the unexpected ferromagnetism in undoped rutile TiO2. Our results show that the ferromagnetism largely originates from the d orbitals of low-charge-state Ti ions converted from Ti4+ ions induced by the surface oxygen vacancies. The second-nearest neighbors of these ions (fivefold coordinated Ti) also contribute to the total magnetic moments. The spins induced by the local oxygen vacancies form a ferromagnetic arrangement.  相似文献   

13.
14.
Raman spectra of an aqueous solution of glycine (Gly) have been recorded in the range of 400-2000 cm−1. In aqueous solution, glycine molecules exist in their zwitterionic form, having two opposite charged poles, COO and NH3+. The zwitterionic structure of glycine (ZGly) is stabilized by the hydrogen bond interaction of water (W) molecules. In the present report, we have optimized the ground state geometries of different hydrogen bonded complexes of [ZGly + (W)n=1-5] in aqueous medium using DFT calculations at the B3LYP/6-311++G(d) level of theory. A comparative discussion on the structural details and binding energies (BEs) of each conformer has been also done. The theoretical Raman spectra were calculated corresponding to the most stable [ZGly + (W)n=1-5] conformers. The theoretically simulated Raman spectra of each stable conformer were compared with experimentally observed Raman spectra to explore the number of water molecules needed for stabilizing the structure of ZGly. The theoretically simulated Raman spectra corresponding to the most stable conformer of [ZGly + (W)5] having a BE of −22.8 kcal/mol, are matching nicely with the experimentally observed Raman spectra. Thus, on the basis of the above observations, we conclude that the conformer, [ZGly + (W)5] is the most probable conformer in the aqueous medium. We also believe that in the conformer, [ZGly + (W)5] the five water molecules are arranged around the ZGly in such a way that the effect of steric hindrance is less compared to the other conformers. The dipole-dipole interaction potential (DDP) is also calculated corresponding to the strongest hydrogen bond for each [ZGly + (W)n=1-5] conformer.  相似文献   

15.
The synthesis of the new cyclopentadiene, C5Me4(hex)H is described and its reaction with Ru3(CO)12 to yield (C5Me4hex)2Ru2(CO)4 (hex = n-hexyl) is reported. The X-ray crystal structure of the dimer confirms the structure with bridging and terminal CO groups. Reactions of the dimer to yield (C5Me4hex)Ru(CO)2X (X = Cl, Br, I) are reported. IR, NMR and mass spectra are reported for all new compounds. The solubility of the dimer is found to be 10 times greater than that for (C5Me5)2Ru2(CO)4.  相似文献   

16.
The structural and magnetic properties of a new ternary Ir-Mn-Ge phase, Mn3IrGe, as well as the solid solution Mn3Ir(Si1−xGex), 0?x?1, have been investigated by means of X-ray and neutron powder diffraction, magnetization measurements and first principles calculations. The crystal structure is cubic, of the AlAu4-type (an ordered form of the β-Mn structure), Z=4, space group P213, and the unit-cell dimension varies linearly with the silicon content. For all compositions, antiferromagnetic ordering is found below a critical temperature of about 225 K. The magnetic structure is noncollinear, as a result of frustrated magnetic interactions on a triangular network of Mn atoms, on which the moments rotate 120° around the triangle axes. The magnitude of the magnetic moment at 10 K is 3.39(4) μB for Mn3IrGe. The theoretical calculations reproduce with very good accuracy the magnitudes as well as the directions of the experimentally observed magnetic moments.  相似文献   

17.
Matrix isolation-FTIR spectra of 2-pyrrolidinone monomer and its two hydrogen bonded dimers are recorded in N2 matrix at 8 K temperature and in CCl4 solution at variable temperature within the range 30-45 °C. The transient singly hydrogen bonded dimer (SHBD) is identified in the cold N2 by comparing the matrix spectrum with that in CCl4 solution. The spectral shifts of both amide-I and amide-A bands indicate cooperative strengthening of hydrogen bonds in doubly hydrogen bonded dimer (DHBD). Density functional theory at B3PW91/6-311++G** level of calculation is found to be in good accord to the observed spectral features.  相似文献   

18.
Reactions of Ln2O3 and trans-4-pyridylacrylic acid (4-Hpya) in EtOH/H2O or MeOH/H2O produced two new lanthanide/4-pya complexes [Ln(4-pya)3(H2O)2]2 (1: Ln = Eu; 2: Ln = La) in low yields. However, reactions of LnCl3 · 6H2O with 4-Hpya/aqueous ammonia in EtOH/H2O or MeOH/H2O gave rise to 1 or 2 in higher yields. Both compounds were structurally characterized by elemental analysis, IR spectroscopy and X-ray analysis. Compounds 1 · 2EtOH · 2H2O and 2 · 2MeOH · 2H2O were confirmed to possess one-dimensional polymeric chain structures. In the structure of 1, each Eu(III) adopts a monocapped square-antiprism coordination geometry and each dimer [Eu(4-pya)3(H2O)2]2 within the chain is interconnected by two pairs of different bridging 4-pya ligands. On the other hand, each La(III) of 2 takes a bicapped square-antiprism coordination geometry and each dimer [La(4-pya)3(H2O)2]2 within the chain is linked by two pairs of tridentate bridging 4-pya ligands. The luminescent properties of 1 and 2 in the solid state were investigated.  相似文献   

19.
Dithiazolyl radicals with π-stacking motifs have attracted particular interest because of their ability to exhibit spin-switching between diamagnetic distorted π-stacks and paramagnetic regular π-stacked structures through a solid state phase transition. Previous studies indicate that inclusion of electronegative heteroatoms into the backbone favours lamellar structures. This methodology has been extended to the synthesis and characterisation of the title compound, 4′-cyanobenzo-1,3,2-dithiazolyl (4-NCBDTA). Its electronic structure is probed through DFT calculations, cyclic voltammetry and EPR spectroscopy and its crystal structure determined by X-ray powder diffraction at room temperature. Variable temperature SQUID magnetometry reveals that 4-NCBDTA undergoes two phase transitions, each exhibiting bistability; a high temperature phase transition occurs at room temperature (TC↓ = 291 K, TC↑ = 304 K, ΔT = 13 K); whilst the low temperature phase transition occurs below liquid nitrogen temperatures (TC↓ = 37 K, TC↑ = 28 K;ΔT = 9 K).  相似文献   

20.
New stable heteroleptic germanium(II) and tin(II) compounds [(SiMe3)2N-E14-OCH2CH2NMe2]n (E14 = Ge, n = 1 (1), Sn, n = 2 (2)) have been synthesized and their crystal structures have been determined by X-ray diffraction analysis. While compound 1 is monomer stabilized by intramolecular Ge ← N coordination, compound 2 is associated to dimer via intermolecular dative Sn ← O interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号