首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Florescu M  A Brett CM 《Talanta》2005,65(2):306-312
Electrochemical glucose enzyme biosensors have been prepared on carbon film electrodes made from carbon film electrical resistors. Evaluation and characterisation of these electrodes in phosphate buffer saline solution has been carried out with and without pretreatment by cycling in perchloric acid or at fixed applied potential. Both pretreatments led to a reduction in the carbon surface oxidation peak and enabled better detection of hydrogen peroxide in the pH range of 5-7. Glucose oxidase enzyme was immobilised on the carbon surface by mixing with glutaraldehyde, bovine serum albumin and with and without Nafion. The performance of these two types of electrode was similar, that containing Nafion being more physically robust. Linear ranges were up to around 1.5 mM, with detection limits 60 μM, and pretreatment of the carbon film electrode at a fixed potential of +0.9 V versus SCE for 5 min was found to be the most beneficial. Michaelis-Menten constants between 5 mM and 10 mM were found under the different experimental conditions. Coating the immobilised enzyme layer with a thin layer of Nafion was found to give similar results in the determination of glucose to mixing it but with benefits against interferences for the analysis of complex matrices, such as wine. Potentialities, for a short-term-use or disposable sensors, are indicated.  相似文献   

2.
The residual liquid junction potential (RLJP) needs to be accounted for in pH uncertainty estimation. Attempts to do this and the currently available methods for evaluating the RLJP are critically discussed and their weak sides are pointed out. In this work an empirical approach to the problem is proposed. It is based on the use of the RLJP bias estimated on a variety of measurement conditions for a specific class of analytical objects essentially differing in ionic strength from the pH calibration buffers. The data from five independent studies, including interlaboratory comparisons, on pH measurement in low ionic strength waters were used to find the overall bias observed in the 10−4 mol dm−3 strong acid solution. The procedure includes quantifying the uncertainty of bias values from separate studies by combination of the relevant uncertainty components and testing the consistency of the data. The weighted mean bias in pH was found to be 0.043 ± 0.007 (k = 2). With this estimate, the pH measurement uncertainties calculated according to the previously suggested procedure (I. Leito, L. Strauss, E. Koort, V. Pihl, Accredit. Qual. Assur. 7 (2002) 242-249.) can be enlarged to take the uncorrected bias into account. The resulting uncertainties on the level of 0.10-0.14 (k = 2) are obtained in this way for pH measurement in water and poorly buffered aqueous solutions in the range of pH 7.5-3.5.  相似文献   

3.
A new amperometric bienzymatic biosensor for gluconic acid based on the coimmobilization of gluconokinase (EC 2.7.1.12) and phosphogluconate dehydrogenase (EC 1.1.1.44) by polysulfone membrane entrapment onto the surface of a graphite-epoxy composite is reported. This biosensor represents an alternative to gluconate dehydrogenase (EC 1.1.99.3) based methods, which is no longer commercially available. Measurements were done at an applied potential of +0.800 V, room temperature and phosphate buffer pH 7.50; obtaining a linear response range for gluconic acid extended from 7.0 × 10−6 to 2.5 × 10−4 M. Constructed biosensors showed good reproducibility for calibrations using different electrodes (RSD of 1.74%). Finally, biosensor was applied to real wine samples, and the results obtained were validated by comparison with those provided by a reference laboratory. Good correlation was found when the biosensor results were plotted vs. the reference values (slope = 1.03 ± 0.04, intercept = 0.01 ± 0.02, r2 = 0.995).  相似文献   

4.
Direct electrochemistry of dsDNA has been achieved by using an ionic liquid 1-butyl-4-methylpyridinium hexafluorophosphate modified carbon nanotubes paste electrode (IL-CNTPE). Oxidation peaks appeared at 0.93 and 1.26 V (vs. Ag/AgCl) on the IL- CNTPE after preconcentration of dsDNA in pH 5.0 acetate buffer, which were attributed to the oxidation of guanine and adenine residues on the dsDNA molecule structure. Based on the signal of guanine, under the optimal conditions, very low levels of dsDNA can be detected after 60 s accumulation with detection limits of 0.249 mg L 16 pM. Additionally, human DNA from a healthy volunteer is determined by use of the IL-CNTPE and it is found to be 40 ± 2, 14 pM.  相似文献   

5.
Goyal RN  Bishnoi S  Chasta H  Aziz MA  Oyama M 《Talanta》2011,85(5):2626-2631
The effect of surface modification of indium tin oxide (ITO) by multi wall carbon nanotube (MWNT) and gold nanoparticles attached multi wall carbon nanotube (AuNP-MWNT) has been studied to determine tryptophan, an important and essential amino acid for humans and herbivores. A detailed comparison has been made among the voltammetric response of bare ITO, MWNT/ITO and AuNP-MWNT/ITO in respects of several essential analytical parameters viz. sensitivity, detection limit, peak current and peak potential of tryptophan. The AuNP-MWNT/ITO exhibited a well defined anodic peak at pH 7.2 at a potential of ∼669 mV for the oxidation of tryptophan as compared to 760 mV at MWNT/ITO electrode. Under optimum conditions linear calibration curve was obtained over tryptophan concentration range 0.5-90.0 μM in phosphate buffer solution of pH 7.2 with detection limit and sensitivity of 0.025 μM and 0.12 μA μM−1, respectively. The oxidation of tryptophan occurred in a pH dependent, 2e and 2H+ process and the electrode reaction followed adsorption controlled pathway. The method has been found selective and successfully implemented for the determination of tryptophan in human urine and plasma samples using standard addition method. The electrode exhibited an efficient catalytic response with good reproducibility and stability.  相似文献   

6.
Methylene blue (MB) was incorporated into mordenite zeolite by ion exchange reaction in aqueous phase. The dye is strongly retained and not easily leached from the zeolite matrix. The solid was characterized by XRD prior to using it for the electrode preparation. This compound was incorporated into a carbon paste electrode for cyclic voltammetric and amperometric measurements. Methylene blue immobilized on the support underwent a quasi-reversible electrochemical redox reaction. In various electrolyte solutions and changing the pH between 2.0 and 7.0, the midpoint potential remained practically constant, i.e. 153.7±0.8 mV. This is not the usual behavior of MB, because in solution phase its midpoint potential changes considerably as the pH changes. The electrode made with this material was used for the mediated oxidation of ascorbic acid. The anodic peak current observed in cyclic voltammetry was linearly dependent on the ascorbic acid concentration. At a fixed potential under static conditions, the calibration plot was linear over the ascorbic acid concentration range 2.0×10−5 to 8.0×10−4 M. The detection limit of the method is 1.21×10−5 M, low enough for trace ascorbic acid determination in various real samples.  相似文献   

7.
Gazy AA 《Talanta》2004,62(3):575-582
The adsorptive and electrochemical behavior of amlodipine besylate on a glassy carbon electrode were explored in Britton-Robinson buffer solution by using cyclic and square-wave voltammetry. Cyclic voltammetric studies indicated the oxidation of amlodipine besylate at the electrode surface through a single two-electron irreversible step and fundamentally controlled by adsorption. The solution conditions and instrumental parameters were optimized for the determination of the authentic drug by adsorptive square-wave stripping voltammetry. Amlodipine besylate gave a sensitive adsorptive oxidation peak at 0.510 V (versus Ag/AgCl). The oxidation peak was used to determine amlodipine besylate in range 4.0×10−8 to 2.0×10−6 with a detection limit of 1.4×10−8 M. The procedure was successfully applied for the assay of amlodipine besylate in tablets (Norvasc)®. The percentage recoveries were in agreement with those obtained by the reference method. Applicability to assay the drug in urine and serum samples was illustrated. The mean percentage recoveries were 96.31±1.18 and 96.98±1.17, respectively. The proposd method used for monotoring clinically relevant concntrations of drug in human urine and serum.  相似文献   

8.
A technique of measurement of thermal conductivity of solid materials by differential scanning calorimetry is presented. It concerns small samples having a diameter less than 8.0 mm, a height less than 2.0 mm and a low thermal conductivity. This method requires many samples with different heights which are heated in such a way that a calibration substance put on their top undergoes a first-order phase transition. The analysis of heat transfer of a such experiment predicts that the slope of the differential power during the transition is proportional to the factor 2 and inversely proportional to the sum of the thermal resistances. A measurement of the thermal conductivity of samples made of polytetrafluoroethylene powder, compressed at the density of 2.10±0.03 g cm−3, has been performed; the value obtained is 0.33±0.02 W m−1 K−1. Measurements of thermal conductivity of small metal hydride pellets are also presented. The precision of the measurements are on average 10%.  相似文献   

9.
For the quantitative analysis of ‘compounds lacking authentic standards or surrogates’ (CLASS) in environmental media, we previously introduced an effective carbon number (ECN) approach to develop an empirical equation for the prediction of their response factor (RF). In this research, a series of laboratory experiments were carried out to benchmark the reliability of an ECN approach for sorbent tube/thermal desorption/gas chromatography (GC)/mass spectrometry (MS) applications. First, the ECN values were determined using external calibration data from 25 reference volatile organic compounds (VOCs) using two MS dectectors (quadrupole (Q) and time-of-flight (TOF)). Then, a certified standard mixture of 54 VOCs was analyzed by each system as a simulated unknown sample. The analytical bias, assessed in terms of percentage difference (PD) between the certified and ECN-predicted mass values, averaged 19.2 ± 16.1% (TOF-MS) and 28.2 ± 27.6% (Q-MS). The bias using a more simplified carbon number (CN)-based prediction increased considerably, yielding 53.4 ± 53.3% (TOF-MS) and 61.7 ± 81.3% (Q-MS). However, the bias obtained using the ECN-based prediction decreased significantly to yield average PD values of 9.84 ± 7.28% (TOF-MS) and 16.8 ± 8.35% (Q-MS), if the comparison was limited to 26 (out of 54) VOCs with CN ≥ 4 (i.e., 25 aromatics and hexachlorobutadiene).  相似文献   

10.
The electrochemical detection of carbaryl at low potentials, in order to avoid matrix interferences, is an important challenge. This study describes the development, electrochemical characterization and utilization of a glassy carbon (GC) electrode modified with multi-wall carbon nanotubes (MWCNT) plus cobalt phthalocyanine (CoPc) for the quantitative determination of carbaryl in natural waters. The surface morphology was examined by scanning electron microscopy, enhanced sensitivity was observed with respect to bare glassy carbon and electrocatalytic effects reduced the oxidation potential to +0.80 V vs. SCE in acetate buffer solution at pH 4.0. Electrochemical impedance spectroscopy was used to estimate the rate constant of the oxidation process and square-wave voltammetry to investigate the effect of electrolyte pH. Square-wave voltammetry in acetate buffer solution at pH 4.0, allowed the development of a method to determine carbaryl, without any previous step of extraction, clean-up, or derivatization, in the range of 0.33-6.61 μmol L−1, with a detection limit of 5.46 ± 0.02 nmol L−1 (1.09 ± 0.02 μg L−1) in water. Natural water samples spiked with carbaryl and without any purification step were successfully analyzed by the standard addition method using the GC/MWCNT/CoPc film electrode.  相似文献   

11.
Bikash Kumar Jena 《Talanta》2010,80(5):1653-842
Au nanoparticle (nAu) based electrochemical platform for the amperometric sensing of isoniazid at sub-nanomolar level is developed. The sol-gel derived 3-dimensional silicate network pre-assembled on a conducting substrate is chemically decorated with nAu of 70-100 nm by seed-mediated growth approach. The Au nanoseeds are first chemisorbed onto the thiol functional groups of the silicate network and their size was enlarged by hydroxylamine seeding. The nanoparticles efficiently catalyze the oxidation of isoniazid at less positive potential. Large decrease in the overpotential and significant enhancement in the anodic peak current with respect to the polycrystalline Au electrode are observed. The nanoparticle based platform is highly sensitive (4.03 ± 0.01 nA/nM) and it linearly responds to isoniazid up to the concentration of 1 mM. It could detect as low as 0.1 nM (S/N = 5) of isoniazid at the potential of 10 mV in aqueous solution without any redox mediator. The catalytic response of the sensing platform depends on the amount of nanoparticles loaded onto the silicate network. Very interestingly, the sensing platform could simultaneously detect isoniazid and hydrazine in their coexistence without compromising the sensitivity. Well separated individual voltammetric response is obtained for both analytes. The sensing platform is highly stable and it can be repeatedly used for 7 days.  相似文献   

12.
Thermo-oxidative effects on the surface energy of polypropylene were measured by inverse gas chromatography as a function of exposure time and temperature. Unaltered polypropylene had a surface energy of 33 mJ/m2. Oxidized polypropylene, after exposure to air at temperatures of 100 °C and 110 °C, had a range of maximum surface energies from 38 to 41 mJ/m2. Comparisons between FTIR carbonyl peak growth and the surface energy showed that both methods detect oxidation, though the increase in surface energy is detected before the carbonyl peak growth is noticeable. The work of adhesion predicted by the surface free energies obtained in this work between a coated calcium carbonate and polypropylene changes by 10% due to the oxidation of the polymer at 110 °C.  相似文献   

13.
New wormhole-like mesoporous TiO2 material has been synthesized through a convenient sol-gel method in the presence of a Schiff base secondary amine hexadecyl-2-pyrrole-methylamine (HPMA) containing chelating donor sites as template or structure directing agent (SDA). SDA molecules can be easily removed from the composite to generate mesoporosity and upon removal of the SDA molecule, this mesoporous TiO2 material showed very high surface area (480 ± 10 m2/g) with an average pore diameter of 2.57 ± 0.05 nm. When Rose Bengal dye is entrapped inside the nanopores of this material, it showed a drastic enhancement (ca. 40-folds) in the photoconductivity vis-à-vis mesoporous TiO2 alone under white light illumination.  相似文献   

14.
The electrochemical determinations of 4-chlorophenol (4-CP) and 4-nitrophenol (4-NP) by chronoamperometry (CA) and multiple pulsed amperometry (MPA) using expanded graphite-epoxy composite (EG-Epoxy) and rotating spectral graphite disc (SG) electrodes are reported. The electrochemical behaviours of both electrodes in the presence of organics informed about oxidation peak potential and the electrode fouling with organics concentration increasing. Setting up the oxidation peak potential as detection potential, only SG gave good electroanalytical performance using CA. However, by MPA applying both electrodes exhibited the capability to assess electrochemically and quantitatively the pollutants from aqueous solutions. UV spectrometric method detecting 4-CP and 4-NP at λ = 280 nm and λ = 398 nm wavelength, respectively was used for validation and parallel determinations.  相似文献   

15.
The cyclic voltammetric behavior of five common pesticides such as dicofol (DCF), cypermethrin (CYP), monocrotophos (MCP), chlorpyrifos (CPF) and phosalone (PAS) was investigated at a poly 3,4-ethylenedioxythiophene modified glassy carbon electrode (PEDOT/GCE). A method was developed for the detection and determination of these pesticides in trace level flowing stream, based on their redox behavior. The square wave stripping voltammetric principle was used to analyze the selected pesticides on PEDOT/GCE. Varying the accumulation potential and accumulation time, the best accumulation conditions were found out. Effects of initial scan potential, square wave pulse amplitude, step potential and frequency were examined for the optimization of stripping conditions. The peak current responses of analyte under optimum conditions were correlated over flow rate by using wall-jet PEDOT/GCE assembly. The calibration plots were linear over the pesticide's concentration range 0.10-72.60 μg l−1 for DCF, 0.41-198.24 μg l−1 for CYP, 0.22-220.95 μg l−1 for MCP, 0.35-259.69 μg l−1 for CPF and 1.07-141.46 μg l−1 for PAS. The limit of detection was obtained between <0.09 and <1.0 μg l−1 for five pesticides. It is low enough for trace pesticide determination in real samples. This method is applied for the determination of the five pesticides in soil samples. The recovery values obtained in spiked soil samples are 95.4 ± 5.4% for DCF, 93.7 ± 4.2% for CYP, 85.3 ± 8.4% for MCP, 94.6 ± 6.6% for CPF and 93.5 ± 4.9% for PAS.  相似文献   

16.
The electrochemical behaviors of guanosine on the ionic liquid of N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CPE) was studied in this paper and further used for guanosine detection. Guanosine showed an adsorption irreversible oxidation process on the carbon ionic liquid electrode (CILE) with the oxidation peak potential located at 1.12 V (vs. SCE) in a pH 4.5 Britton-Robinson (B-R) buffer solution. Compared with that on the traditional carbon paste electrode, small shift of the oxidation peak potentials appeared but with a great increment of the oxidation peak current on the CILE, which was due to the presence of ionic liquid in the modified electrode adsorbed the guanosine on the surface and promoted the electrochemical response. The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n), and the electrode reaction standard rate constant (ks) were calculated as 0.74, 1.9 and 1.26 × 10−4 s−1, respectively. Under the optimal conditions the oxidation peak current showed a good linear relationship with the guanosine concentration in the range from 1.0 × 10−6 to 1.0 × 10−4 mol/L by cyclic voltammetry with the detection limit of 2.61 × 10−7 mol/L (3σ). The common coexisting substances showed no interferences to the guanosine oxidation. The CILE showed good ability to distinguish the electrochemical response of guanosine and guanine in the mixture solution. The urine samples were further detected by the proposed method with satisfactory results.  相似文献   

17.
We report a first-principle study of electrical transport and switching behavior in a single molecular conductor consisting of a dithiole-benzene (DTB) sandwiched between two Au(100) electrodes. Ab initio total energy calculations reveal DTB molecules on a gold surface, contacted by a monoatomic gold scanning tunneling microscope (STM) tip to have two classes of low energy conformations with differing symmetries. Lateral motion of the tip or excitation of the molecule cause it to change from one conformation class to the other and to switch between a strongly and a weakly conducting state. Thus, surprisingly, despite their apparent simplicity, these Au-DTB-Au nanowires are shown to be electrically bi-stable switches, the smallest two-terminal molecular switches to date. The projected density of states (PDOS) and transmission coefficients are analyzed, and it suggests that the variation of the coupling between the molecule and the electrodes with external bias leads to switching behavior.  相似文献   

18.
In a first step towards chemical sensors using molecular imprinted materials, the complexing characteristics of diethyl 4-nitrobenzylphosphonate, an organophosphate pesticide analogue, have been studied. Two molecules have been assessed as potential interacting moieties, specifically a fluoroalcohol and an aromatic acid. The interactions have been first characterized by regular methods, such as 1H, 31P NMR and IR spectroscopy. These showed a stoichiometry 1/1 for both complexes and association constants, respectively, close to 40 ± 10 and 12 ± 2 M−1. In a second step, isothermal titration calorimetry was used and a method was developed to obtain low-association constants. The association constant could be obtained for the fluoroalcohol ligand and was found equal to 63 ± 0.7 M−1. For the acidic molecule, an appropriate model could not be found, preventing the evaluation of this constant.  相似文献   

19.
An unsymmetrical organic compound with carbazole (Cz) as donor and benzothiadiazole (BTD) as acceptor (D-π-A-π∗-D∗) was designed and synthesized via simple Heck reaction. The unique crystal structure of Cz-BTD-Cz∗ shows a ladder-like packing mode. A two molecule pair stacks parallelly with each other in each packing unit. In each cell, one Cz moiety is connected with BTD by vinylene bond in same plane. However, the other Cz group is connected to BTD by a one-end vinyl bond in almost perpendicular position to the coplanar part of the molecule. The shortest intermolecular plane distance is 3.48 ± 0.1 Å. The photophysical properties of Cz-BTD-Cz∗ in solution and in bulky crystalline powder state were studied. In bulk crystalline powder state, it has a red-shifted emission band peaked at 609 nm relative to that in solution, and the FWHM was reduced to only 58 nm. Electrochemical properties were also investigated.  相似文献   

20.
Ochratoxin A (OTA) is a fungal metabolite that occurs in foods, beverages, animal tissues, human blood and presents carcinogenic, teratogenic and nephrotoxic properties. This study concerns the redox properties of OTA using electrochemical techniques which have the potential for providing insights into the biological redox reactions of this molecule. The in situ evaluation of the OTA interaction with DNA using a DNA-electrochemical biosensor is also reported.The oxidation of OTA is an irreversible process proceeds with the transfer of one electron and one proton in a diffusion-controlled mechanism. The diffusion coefficient of OTA was calculated in pH 7 phosphate buffer to be DO = 3.65 × 10−6 cm2 s−1. The oxidation of OTA is also pH dependent for electrolytes with pH < 7 and involves the formation of a main oxidation product which adsorbs strongly at the GCE surface undergoing reversible oxidation. In alkaline electrolytes OTA undergoes chemical deprotonation, the oxidation involving only the transfer of one electron.The electrochemical dsDNA-biosensor was also used to evaluate the possible interaction between OTA and DNA. The experiments have clearly proven that OTA interacts and binds to dsDNA strands immobilized onto a GCE surface, but no evidence of DNA-damage caused by OTA was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号