首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
This paper presents a methodology to combine stochastic Lagrangian approach and continuum model to simulate the dispersed phase in gas-particle turbulent flows using that both approaches are based on the same Boltzmann-like kinetic equation governing the joint fluid-particle probability density function (pdf). The proposed hybrid method is based on the separate application of each approach in two adjacent domains and their coupling at the interface via flux boundary conditions. Validation of the method is carried out for non-colliding solid particles suspended in homogeneous turbulent shear flow without two-way coupling.  相似文献   

2.
Measurement of the gradient field of a turbulent free surface   总被引:1,自引:1,他引:0  
We study the free surface above a turbulent channel flow. We describe a laser scanning technique that can be used to measure the space–time turbulent surface gradient field along a line. A harmonically swiveling laser beam is focused on the surface and its angle of refraction is measured using a position sensing device. The registered signals can be converted easily to the desired gradient field, and spectra and correlations can be measured. Examples of measured spectra and correlation functions of the surface above a turbulent channel flow (Reynolds number R λ ≈ 250) demonstrate the viability of the technique. We further assess the validity of Taylor’s frozen turbulence hypothesis that implies that time-dependent signals measured along a line that is oriented perpendicularly to the mean channel velocity can be interpreted as 2D measurements of the surface slope. While Taylor’s hypothesis works for a turbulent velocity field, it does not work for its free surface.
Willem van de WaterEmail:
  相似文献   

3.
This paper presents a combined experimental and numerical study of the flow characteristics of round vertical liquid jets plunging into a cylindrical liquid bath. The main objective of the experimental work consists in determining the plunging jet flow patterns, entrained air bubble sizes and the influence of the jet velocity and variations of jet falling lengths on the jet penetration depth. The instability of the jet influenced by the jet velocity and falling length is also probed. On the numerical side, two different approaches were used, namely the mixture model approach and interface-tracking approach using the level-set technique with the standard two-equation turbulence model. The numerical results are contrasted with the experimental data. Good agreements were found between experiments and the two modelling approaches on the jet penetration depth and entraining flow characteristics, with interface tracking rendering better predictions. However, visible differences are observed as to the jet instability, free surface deformation and subsequent air bubble entrainment, where interface tracking is seen to be more accurate. The CFD results support the notion that the jet with the higher flow rate thus more susceptible to surface instabilities, entrains more bubbles, reflecting in turn a smaller penetration depth as a result of momentum diffusion due to bubble concentration and generated fluctuations. The liquid average velocity field and air concentration under tank water surface were compared to existing semi-analytical correlations. Noticeable differences were revealed as to the maximum velocity at the jet centreline and associated bubble concentration. The mixture model predicts a higher velocity than the level-set and the theory at the early stage of jet penetration, due to a higher concentration of air that cannot rise to the surface and remain trapped around the jet head. The location of the maximum air content and the peak value of air holdup are also predicted differently.  相似文献   

4.
5.
The interaction between multiple incompressible air jets has been studied numerically and experimentally. The numerical predictions have been first validated using experimental data for a single jet configuration. The spreading features of five unequal jets in the configuration of one larger central jet surrounded by four smaller equi‐distant jets, have been studied, for different lateral spacing ratios of 1.5, 2.0 and 2.5 and a central jet Reynolds number of 1.24×105 (corresponding to a Mach number of 0.16). Flow of five equal jets has also been simulated, for the sake of comparison. The jet interactions commence at an axial distance of about 3–4 diameters and complete by an axial distance of about 10 diameters for the lowest spacing ratio of 1.5. For larger spacing ratios, the length required for the start and completion of jet interaction increase. Peripheral jets bend more towards the central jet and merge at a smaller distance, when their sizes are smaller than that of the central jet. The entrainment ratio for multiple jets is higher than that for a single jet. Excellent agreement is observed between the experimental data and theoretical predictions for both mean flow field and turbulent quantities, at regions away from the jet inlet. The potential core length and initial jet development, however, are not predicted very accurately due to differences in the assumed and actual velocity profiles at the jet inlet. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
I.IntroductionRotor-shaftingiswidelyusedinengineering,androtor-shaftingtorsionvibrationisgainingattentionwidespreadly.Inthispaper,themodeloftherotor-shaftingtorsionvibrationofa200MWturbogenerationsetisdesignedandathreecircularplatestorsionvibrationsystemwithcubicnonlinearitiestoasimple-harmonicexcitationisstudied.TheobjectiveofthepaperistostudythedynamicsphenomenaofthesystemwhileQ=co2.Themethodofaveragingisusedandthesteadystateresponsebifurcationequationanditssingularityanalysisaregiven.Thet…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号