首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigate the effects of laser field intensity over the ground state binding energy of light and heavy hole excitons confined in GaAs/Ga1?xAlx As cylindrical quantum wire. We have applied the variational method using 1s‐hydrogenic wave functions, in the framework of the single band effective mass approximation with the spatial dielectric function. The polaronic effects are included in the calculation to compute the exciton binding energy as a function of the wire radius for different field of laser intensity. The valence‐band anisotropy is included in our theoretical model by using different hole masses in different spatial directions. The dressed laser donor binding energies are calculated and compared with the results of binding energy of excitons. The results show that (i) the binding energy is found to increase with decrease with the wire radius, and decrease with increase with the value of laser field amplitude, (ii) the heavy‐hole exciton in a cylindrical quantum wire is more strongly bound than the light‐hole exciton, (iii) the values of ground state binding energy for the laser field amplitude α0 = 10 Å resemble with the values of heavy hole exciton binding energy, and (iv) the binding energy of the impurity for the narrow well wire is more sensitive to the laser field amplitude. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
Triplet excitons in electron donor—acceptor charge-transfer (CT) molecular crystals are generated through the intersystem crossing process by excitation in the CT visible band and give rise to delayed fluorescence. Delayed-fluorescence optically detected magnetic resonance (DF ODMR) in magnetic field is analyzed in terms of microwave-induced transitions between energy levels of either the isolated triplet excitons or the annihilating triplet exciton pair. The spin polarization of the triplet excitons plays an important role in the described phenomena. A comparison between DF ODMR and EPR spectra of the anthracene—tetracyanobenzene and biphenyl—tetracyanobenzene systems is presented. In the former case the microwave transitions occurring between free exciton sublevels are predominantly responsible of the DF ODMR signal, whereas the transitions between energy levels of the exciton pair are the most important for biphenyl—TCNB.  相似文献   

3.
The dispersion of the lowest lying singlet electron–hole excitation of pentacene along the reciprocal lattice vector (1 0 0) has been studied using electron energy-loss spectroscopy. This exciton shows a clear dispersion along the direction with a band width of about 100 meV. Moreover, the translational symmetry indicated by the exciton band structure does not agree with that reported from diffraction studies. This might be related to the interaction responsible for the dispersion which is of next nearest neighbor type only.  相似文献   

4.
The electronic structure and size-scaling of optoelectronic properties in cycloparaphenylene carbon nanorings are investigated using time-dependent density functional theory (TDDFT). The TDDFT calculations on these molecular nanostructures indicate that the lowest excitation energy surprisingly becomes larger as the carbon nanoring size is increased, in contradiction with typical quantum confinement effects. In order to understand their unusual electronic properties, I performed an extensive investigation of excitonic effects by analyzing electron-hole transition density matrices and exciton binding energies as a function of size in these nanoring systems. The transition density matrices allow a global view of electronic coherence during an electronic excitation, and the exciton binding energies give a quantitative measure of electron-hole interaction energies in the nanorings. Based on overall trends in exciton binding energies and their spatial delocalization, I find that excitonic effects play a vital role in understanding the unique photoinduced dynamics in these carbon nanoring systems.  相似文献   

5.
A perspective on the operating principles of organic bulk heterojunction solar cells is outlined and used to suggest an alternative device configuration, employing two type II semiconductor heterojunctions in series. Guiding principles to the implementation of this configuration, called a double heterojunction, are summarized. Assuming an exciton binding energy of 0.3 eV or less, results in a maximum achievable power conversion efficiency of well over 25 %. Achieving a high efficiency organic double heterojunction requires a specific energy level alignment, charge separation in the absence of driving forces, high phase purity and excellent diode quality. Fully conjugated triblock polymers of the form [D1‐A1]‐[D1‐A2]‐[D2‐A2] appear to be a system that can fulfill these requirements. Going forward, the primary challenge is the identification and development of synthetically tractable materials which have the necessary properties.  相似文献   

6.
Photoluminescence (PL) of zinc oxide (ZnO) nanorods with an average thickness of 5 nm and a length of 30 nm is blue-shifted compared to the bulk due to quantum confinement effects. The exciton states remain relatively stable at a high carrier density due to a smaller exciton size and an enhanced exciton binding energy in the quantum confined nanorods, whereas the electron-hole plasma states are formed in the bulk at the similar carrier density. A linear dependence of the PL intensity on the excitation intensity also corroborates the assumption that the stable exciton states are responsible for the undisturbed emission at a high carrier density.  相似文献   

7.
Lithium tungsten borate glass (0.56−x)B2O3–0.4Li2O–xZnO–0.04WO3 (0≤x≤0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200–2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz–Lorenz theory, as ZnO content increases on the expense of B2O3 the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density, which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita–Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B2O3, which increase the UV glass transmission window and transmittance.  相似文献   

8.
The structure–spectroscopy–function relationship of 1,1′,3,3′-tetraethyl-5,5′,6,6′-tetrachlorobenzimidazolocarbocyanine (TTBC) aggregates is studied using a combination of experimental and theoretical techniques. The aggregates are macroscopically aligned in poly-vinyl-alcohol thin films by vertical spin coating. Angular dependence of the UV–Vis spectra is measured at eleven different orientations between the electric field polarization and the macroscopic alignment axis. The aggregates are characterized by a pair of Davydov split bands with opposite polarization behaviors: an H-band (505 nm) and a J-band (594 nm) polarized respectively, close to being parallel and perpendicular to the alignment axis. Spectral response is interpreted via simulations within the Frenkel exciton formalism. TTBC aggregates are shown to assume very similar internal molecular packing (herringbone) and dynamics of excited states (phonon-assisted intraband and interband relaxations) in ionic aqueous solution and in thin films. The general conclusions on the structure–spectroscopy–function relationship are expected to hold for other cyanine aggregates with the same generic spectral features.  相似文献   

9.
The difference between the excitation energies and corresponding orbital energy gaps, the exciton binding energy, is investigated based on time‐dependent (TD) density functional theory (DFT) for long‐chain systems: all‐trans polyacetylenes and linear oligoacenes. The optimized geometries of these systems indicate that bond length alternations significantly depend on long‐range exchange interactions. In TDDFT formalism, the exciton binding energy comes from the two‐electron interactions between occupied and unoccupied orbitals through the Coulomb‐exchange‐correlation integral kernels. TDDFT calculations show that the exciton binding energy is significant when long‐range exchange interactions are involved. Spin‐flip (SF) TDDFT calculations are then carried out to clarify double‐excitation effects in these excitation energies. The calculated SF‐TDDFT results indicate that double‐excitation effects significantly contribute to the excitations of long‐chain systems. The discrepancies between the vertical ionization potential minus electron affinity (IP–EA) values and the HOMO–LUMO excitation energies are also evaluated for the infinitely long polyacetylene and oligoacene using the least‐square fits to estimate the exciton binding energy of infinitely long systems. It is found that long‐range exchange interactions are required to give the exciton binding energy of the infinitely long systems. Consequently, it is concluded that long‐range exchange interactions neglected in many DFT calculations play a crucial role in the exciton binding energies of long‐chain systems, while double‐excitation correlation effects are also significant to hold the energy balance of the excitations. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
The temperature dependence of the fluorescence spectra of aggregates in naphthalene-perdeuteronaphthalene mixed crystals has been investigated between 1.4 and 70 K and for concentrations up to 50% naphthalene. It is shown that the most abundant traps — the monomer guest molecules — transfer energy like a guest exciton band 48 cm?1 below the host exciton band. With increasing temperature, the excitation energy is redistributed between the different aggregate traps by thermal activation into the monomer states. The energy transfer constant within the monomer exciton band is measured as a function of concentration. It is suggested that dipole-dipole interaction between the monomer guests is responsible for the energy transfer via guest excitons.  相似文献   

11.
This paper quantifies the theoretical limit of energy consumption for the removal of 20 representative organic contaminants (9 chlorinated alkyl hydrocarbons, 3 chlorinated alkenes, 3 brominated methanes, 5 aromatic hydrocarbons and their derivatives) in the United States Environmental Protection Agency (U.S. EPA) Priority Pollutant List by physical procedures. The general rules of the theoretical limit of energy consumption with different initial concentrations at 298.15 K and 1.01325 × 105 Pa by NRTL, UNIQUAC and Wilson models are obtained from the thermodynamic analysis with our previously established method based on the thermodynamic first and second law. The results show that the waste treatment process needs a high energy consumption and the theoretical limit of energy consumption for organic contaminant removal increases with decreasing initial concentrations in aqueous solutions. The theoretical limit of energy consumption decreases with the more C–H bonds being replaced by C–Cl or C–Br bonds in chlorinated methanes, ethanes, ethenes or brominated methanes except for 1,1,2,2-tetrachloroethane, and the energy consumption for the removal of chlorinated methanes is higher than that of chlorinated ethanes with the same C–H bonds being replaced by C–Cl bonds. For the removal of chlorinated ethenes, brominated methanes and benzene and its derivatives studied, the energy consumption has corresponding relationship with solubility and the energy consumption is higher for the removal of organics with higher solubility.  相似文献   

12.
The donor:acceptor(D:A) blend ratio plays a very important role in affecting the progress of charge transfer and energy transfer in bulk heterojunction(BHJ) orga nic solar cells(OSCs).The proper D:A blend ratio can provide maximized D/A interfacial area for exciton dissociation and appro p riate domain size of the exciton diffusion length,which is beneficial to obtain high-performance OSCs.Here,we comprehensively investigated the relationship between various D:A blend ratios and the charge transfer and energy transfer mechanisms in OSCs based on PBDB-T and non-fullerene acceptor IT-M.Based on various D:A blend ratios,it was found that the ratio of components is a key factor to suppress the formation of triplet states and recombination energy losses.Rational D:A blend ratios can provide appropriate donor/accepter surface for charge transfer which has been powerfully verified by various detailed experimental results from the time-resolved fluorescence measurement and transient absorption(TA) spectroscopy.Optimized coherence length and crystallinity are verified by grazing incident wide-angle X-ray scattering(GIWAXS) measurements.The results are bene ficial to comprehend the effects of various D:A blend ratios on charge transfer and energy transfer dynamics and provides constructive suggestions for rationally designing new materials and feedback for photovoltaic performance optimization in non-fullerene OSCs.  相似文献   

13.
Assessing the functional outcome of protein interactions in structural terms is a goal of structural biology, however most techniques have a limited capacity for making structure–function determinations with both high resolution and high throughput. Mass spectrometry can be applied as a reader of protein chemistries in order to fill this void, and enable methodologies whereby protein structure–function determinations may be made on a proteome-wide level. Protein hydrogen/deuterium exchange (H/DX) offers a chemical labeling strategy suitable for tracking changes in “dynamic topography” and thus represents a powerful means of monitoring protein structure–function relationships. This review presents the exchange method in the context of interaction analysis. Applications involving interface detection, quantitation of binding, and conformational responses to ligation are discussed, and commentary on recent analytical developments is provided.  相似文献   

14.
The problem of excitons in interaction with phonons in a molecular crystal has been reinvestigated as a continuation of our earlier work. The exciton-phonon interaction has been taken to be linear in lattice displacements. The external medium, the phonon assembly, has been considered to be in thermal equilibrium. Following Simons, we have incorporated the effects of the medium on the exciton dynamics into a time-dependent effective potential that contains the equilibrium average exciton-phonon interaction as well as terms arising from the fluctuations in the medium's coordinates about their equilibrium values. A correlation function that represents the probability of exciton transfer has been given in the interaction picture. The time evolution of this correlation function has been determined by following Kubo's technique of cumulant expansion. The zeroth-, second-, and fourth-order contributions to the correlation function have been calculated in this way. The second- and fourth-order contributions have been diagrammatically represented. The second-order contribution has been explicitly calculated in different physical limits, namely, the slow exciton and the slow phonon limits at high and low temperatures and for very large and very small time. A few simple formulas for the transfer probability of a bare exciton in a molecular crystal of cubic symmetry have been derived from the Debye approximation for the dispersion of phonons. It has been specifically shown that the sum over phonon modes in the large time dynamics leads to a fully destructive interference in second order at a very low temperature and gives rise to a diffusive transport at a high enough temperature. A natural way of clothing the excitons has been considered and the clothed exciton has been represented diagrammatically. The dressing requires the correlation function to be redefined in terms of the clothed states and the clothed operators. The clothed exciton correlation function that represents the probability of transfer of excitons fully clothed by the phonons in thermal equilibrium turns out to be identical with the bare exciton correlation function. This attaches a novel interpretation to the correlation function which was originally defined by Simons. Transfer probabilities for a clothed exciton in a cubic crystal has been explicitly worked out for different physical limits under the Debye model of phonon dispersion. From these results a few expressions for the macroscopic diffusion coefficient of the clothed exciton have been obtained. A few critical comments have been incorporated. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
This study presents the optimization and application of an analytical method based on the use of stir bar sorptive extraction (SBSE) gas chromatography coupled to mass spectrometry (GC–MS) for the ultra-trace analysis of POPs (Persistent Organic Pollutants) in Arctic ice. In a first step, the mass-spectrometry conditions were optimized to quantify 48 compounds (polycyclic aromatic hydrocarbons, brominated diphenyl ethers, chlorinated biphenyls, and organochlorinated pesticides) at the low pg/L level. In a second step, the performance of this analytical method was evaluated to determine POPs in Arctic cores collected during an oceanographic campaign. Using a calibration range from 1 to 1800 pg/L and by adjusting acquisition parameters, limits of detection at the 0.1–99 and 102–891 pg/L for organohalogenated compounds and polycyclic aromatic hydrocarbons, respectively, were obtained by extracting 200 mL of unfiltered ice water. α-hexachlorocyclohexane, DDTs, chlorinated biphenyl congeners 28, 101 and 118 and brominated diphenyl ethers congeners 47 and 99 were detected in ice cores at levels between 0.5 to 258 pg/L. We emphasise the advantages and disadvantages of in situ SBSE in comparison with traditional extraction techniques used to analyze POPs in ice.  相似文献   

16.
As new and chiral macrocyclophanes with unique structures, variously sized Pn and Mn (n=2–7=number of ‘rod’ segments) with D2D7 symmetry were constructed by alternating connection of axially chiral binaphthyls and linear biphenyls via –CH2O– moieties, so that the macrocycle consists of multiple rod-like naphthalene–biphenyl–naphthalene units linked together at the binaphthyl bonds. The dihedral angle of the two naphthalene rings of binaphthyl is restricted to around 90°, and the calculated values of strain energy difference per naphthalene–biphenyl unit in P2P7 are almost independent of the macrocycle size, presumably owing to the flexibility of the –CH2O– connectors.  相似文献   

17.
The complexation of native β-cyclodextrin (CD) and seven aromatic compounds, namely, phenetole, toluene, m-xylene, naphthalene, biphenyl, fluorene and phenanthrene, has been studied for first time utilizing a solid-phase microextraction (SPME)–high-performance liquid chromatography (HPLC) method. The stoichiometries of the analyte:β-CD complexes were found to be either 1:1 or 1:2. The formation of 1:2 complexes was confirmed for naphthalene, biphenyl, fluorene, and phenanthrene only when utilizing relatively high concentrations of β-CD (up to 6.6 mM). The 1:2 stoichiometries were confirmed using the classical modified Benesi–Hildebrand (BH) method. The calculated binding constants for 1:1 stoichiometries (K1) using the SPME method varied from 115.3 M−1 for toluene to 3510 M−1 for phenanthrene, whereas the corresponding values to the 1:2 stoichiometries (K3) varied from 7.30 × 105 M−2 for biphenyl to 9.03 × 106 M−2 for naphthalene.  相似文献   

18.
The F3CCl?FH and F3CCl?FCH3 dimers, which feature the halogen–halogen contacts, are investigated at MP2/6–311++G(d,p) and MP2/aug–cc–pVDZ levels of approximation. The binding energies of these complexes are found to be comparable to those of the weak hydrogen bonds. In both complexes the Cl?F are found to be significantly shorter than the sum of the corresponding van der Waals radii. The C–Cl?F contacts are also found to exhibit certain deviation from linearity. However, the energy differences between linear and bent structures are very small and primarily accounted for by electrostatic interactions between remote parts of the dimer. This indicates a high conformational flexibility of the halogen–halogen contacts and may help to explain the diversity of structural features in crystals formed by halogen-containing molecules. In both dimers the halogen–halogen interaction leads to certain shortening of the C–Cl electron accepting bond. This is accompanied by a small increase of the C–Cl stretching frequency. Hence, the two investigated dimers can possibly be classified as the blue-shifting halogen–halogen contacts.  相似文献   

19.
The exciton binding energy serves as a critical criterion for identification of the nature of elementary excitations (neutral excitons versus a pair of charged carriers) in semiconductor materials. An exciton binding energy of 0.41 eV is determined experimentally for a selected nanotube type, the (8,3) tube, confirming the excitonic nature of the elementary excitations. This determination is made from the energy difference between an electron-hole continuum and its precursor exciton. The electron-hole continuum results from dissociation of excitons following extremely rapid exciton-exciton annihilation and possibly also ultrafast relaxation from the second to the first exciton states and is characterized by distinct spectroscopic and dynamic signatures.  相似文献   

20.
The properties of the complex between fragment B of Protein A and the Fc domain of IgG were investigated adopting molecular dynamics with the intent of providing useful insight that might be exploited to design mimetic ligands with properties similar to those of Protein A. Simulations were performed both for the complex in solution and supported on an agarose surface, which was modeled as an entangled structure constituted by two agarose double chains. The energetic analysis was performed by means of the molecular mechanics Poisson Boltzmann surface area (MM/PBSA), molecular mechanics generalized Born surface area (MM/GBSA), and the linear interaction energy (LIE) approaches. An alanine scan was performed to determine the relative contribution of Protein A key amino acids to the complex interaction energy. It was found that three amino acids play a dominant role: Gln 129, Phe 132 and Lys 154, though also four other residues, Tyr 133, Leu 136, Glu 143 and Gln 151 contribute significantly to the overall binding energy. A successive molecular dynamics analysis of Protein A re-organization performed when it is not in complex with IgG has however shown that Phe 132 and Tyr 133 interact among themselves establishing a significant π–π interaction, which is disrupted upon formation of the complex with IgG and thus reduces consistently their contribution to the protein–antibody bond. The effect that adsorbing fragment B of Protein A on an agarose support has on the stability of the protein–antibody bond was investigated using a minimal molecular model and compared to a similar study performed for a synthetic ligand. It was found that the interaction with the surface does not hinder significantly the capability of Protein A to interact with IgG, while it is crucial for the synthetic ligand. These results indicate that ligand–surface interactions should be considered in the design of new synthetic affinity ligands in order to achieve results comparable to those of Protein A right from the ligand design stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号