首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.  相似文献   

2.
3.
当γ,μ满足一定条件时,六次函数V(R,γ)=C[R6+2γR4+(γ2+μ)R2]的图像是双势阱,可用来描述质子转移,且其相应的Schrodinger方程有解析解.用此势函数结合一维双势阱模型及变分法,并用B3P86密度泛函方法在6-311G水平下计算了该分子的平衡态和过渡态的构型及能量,研究了9-羟基苯嵌萘酮的基态能级劈裂,与其它理论值相比,所得计算结果[ΔH(0)=86.13cm-1]与实验值符合得较好.  相似文献   

4.
5.
张维冰  高方园  关亚风  张玉奎 《色谱》2014,32(4):395-401
电喷雾离子源(electrospray ionization,ESI)不仅可以用于小分子的检测,也能够用于蛋白质、多肽等大分子的研究。本文通过对离子化过程的系统分析,提出了基于能量最低原理的离子化过程能量转移理论。样品分子在由液相转移到气相形成离子化气体的过程中受到静电力、分子间的范德华力等多种力的作用。样品的离子化是多种力共同作用的结果,在不同的离子化阶段,不同形式的力的作用也不尽相同。电荷在样品表面蒸发和多电荷离子的形成之间存在竞争。对不同结构的分子,分子形态、构象改变导致的两相间转移Gibbs自由能变化不同,可能导致离子蒸发、大分子形成多电荷离子、产生链弹射等行为。离子化能量转移理论不仅能够对已有的3种理论加以简化统一,也可以说明溶剂、电解质离子等在离子化过程中的作用,为优化不同结构与形态样品的质谱检测、了解离子化的真实过程提供了一种可能的依据。  相似文献   

6.
The potential energy surface for the H2S dimer is calculated as the sum of the SCF-MO-LCGO energy with a new, modified, basis set and the estimated dispersion energy. Proton affinities for SH and H2S, and, as their difference, the energy of the proton transfer between two H2S molecules, are also calculated. Despite the limited basis set used, the results are consistent with experimental data.This work was partly supported by the Polish Academy of Sciences within the project PAN-3.  相似文献   

7.
The geometries of two reaction systems have been optimized under the constraint of C symmetry, using the UHF/6‐31G method. The potential energy surfaces (PES) of the two systems in different external electric field have been constructed using a linear reaction coordinate. It is concluded that the reorganization energies and electron transfer matrix elements for both systems are almost independent of the external electric field. However, the standard Gibbs energy difference changes remarkably with the change of the external electric field. Hence, the applied electric field leads to the variation of rate constant of electron transfer reaction. The threshold field, where the electron transfer becomes barrier free, is obtained to be 0.0015 a.u. for the anion system 1, and 0.00097 a.u. for the anion system 2. The threshold field for modified system 1, in which the hydrogen atoms linking to benzene rings are replaced by fluorine atom, is 0.0018 a.u. The calculations show that the best way to adjust the threshold field is to adjust the dipole moment of the reaction system by changing the length of the bridge. As the rate constant in field‐free case is taken into account, neither reaction systems could be used as molecular electronic device. But if the bridge consists of three or four HCTDs, the rate constant and threshold field will satisfy the practical demand. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

8.
Potential energy surfaces (PES) for the ground and excited state intramolecular proton transfer (ESIPT) processes in 5-hydroxy-flavone (5HF) were studied using DFT-B3LYP/6-31G(d) and TD-DFT/6-31G(d) level of theory, respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer (GSIPT) in 5HF. Excited states PES calculations support the existence of ESIPT process in 5HF. ESIPT in 5HF has been explained in terms of HOMO, LUMO electron density of the enol and keto tautomer of 5HF. PES scan by phenyl group rotation suggests that the twisted form, i.e., phenyl group rotated by 18.7° out of benzo-γ-pyrone ring plane is the most stable conformer of 5HF.  相似文献   

9.
After a brief introduction to neutron scattering techniques, illustrated with the scattering function for harmonic oscillators, some new aspects of proton dynamics in the KHCO3 crystal are presented. The full scattering function for the proton modes measured on single crystals provides a graphic view of proton dynamics. Vibrational states are fully characterized with three quantum numbers. The effective oscillator mass of 1 amu confirms the decoupling of protons from the lattice. Combining infrared, Raman and inelastic neutron scattering techniques, the double minimum potential for the transfer of a single proton along hydrogen bonds is totally determined. Elastic neutron scattering techniques probe dynamics in the fully degenerate ground state. Quantum entanglement arising from normal coordinates gives rise to quantum interference. With diffraction techniques, the dynamical structure arising from large-scale quantum coherence is observed as ridges of intensity, well separated from Bragg's peaks. The vibrational wave function in the ground state must be regarded as a superposition of non-factorable macroscopic wave function.  相似文献   

10.
11.
The singlet and triplet potential energy surfaces (PESs) for the gas-phase bimolecular self-reaction of HOO*, a key reaction in atmospheric environments, have been investigated by means of quantum-mechanical electronic structure methods (CASSCF and CASPT2). All the reaction pathways on both PESs consist of a first step involving the barrierless formation of a prereactive doubly hydrogen-bonded complex, which is a diradical species lying about 8 kcal/mol below the energy of the reactants at 0 K. The lowest energy reaction pathway on both PESs is the degenerate double hydrogen exchange between the HOO* moieties of the prereactive complex via a double proton transfer mechanism involving an energy barrier of only 1.1 kcal/mol for the singlet and 3.3 kcal/mol for the triplet at 0 K. The single H-atom transfer between the two HOO* moieties of the prereactive complex (yielding HOOH + O2) through a pathway keeping a planar arrangement of the six atoms involves a conical intersection between either two singlet or two triplet states of A' and A" symmetries. Thus, the lowest energy reaction pathway occurs via a nonplanar cisoid transition structure with an energy barrier of 5.8 kcal/mol for the triplet and 17.5 kcal/mol for the singlet at 0 K. The simple addition between the terminal oxygen atoms of the two HOO* moieties of the prereactive complex, leading to the straight chain H2O4 intermediate on the singlet PES, involves an energy barrier of 7.3 kcal/mol at 0 K. Because the decomposition of such an intermediate into HOOH + O2 entails an energy barrier of 45.2 kcal/mol at 0 K, it is concluded that the single H-atom transfer on the triplet PES is the dominant pathway leading to HOOH + O2. Finally, the strong negative temperature dependence of the rate constant observed for this reaction is attributed to the reversible formation of the prereactive complex in the entrance channel rather than to a short-lived tetraoxide intermediate.  相似文献   

12.
Photophysical properties of a porphyrin-phthalocyanine heterodimer covalently linked with a dipentoxy chain have been studied.Absorption spectra show that there is weak exciton coupling between the two chromophores in the ground state.Fluorescence spectra show that intramolecular energy transfer from porphyrin to phthalocyanine moiety occurs in competition with electron transfer.The efficiency of these two processes depends upon the mutual orientation of the two chromophores.The effect of solvent polarity on the intramolecular processes is also discussed.  相似文献   

13.
Photocatalysis reactions using [RuII(bpy)3]2+ were studied on the example of visible‐light‐sensitized reversible addition–fragmentation chain transfer (RAFT) polymerization. Although both photoinduced electron‐ and energy‐transfer mechanisms are able to describe this interaction, no definitive experimental proof has been presented so far. This paper investigates the actual mechanism governing this reaction. A set of RAFT agents was selected, their redox potentials measured by cyclic voltammetry, and relaxed triplet energies calculated by quantum mechanics. Gibbs free‐energy values were calculated for both electron‐ and energy‐transfer mechanisms. Quenching rate constants were determined by laser flash photolysis. The results undoubtedly evidence the involvement of a photoinduced energy‐transfer reaction. Controlled photopolymerization experiments are discussed in the light of the primary photochemical process and photodissociation ability of RAFT agent triplet states.  相似文献   

14.
An automatic Born-Oppenheimer potential energy surface (PES) generation method AGAPES is presented designed for the calculation of vibrational spectra of large rigid and semi-rigid polyatomic molecules within the mid-infrared energy range. An adaptive approach guided by information from intermediate vibrational calculations in connection with a multi-mode expansion of the PES in internal valence coordinates is used and its versatility is tested for a selection of molecules: HNO, HClCO, and formaldoxime. Significant computational savings are reported. The possibility of linear scaling of the sampling grid size with the molecular size due to decrease of correlation of remote coordinates in large molecules is examined and finally, possible improvements are suggested.  相似文献   

15.
This study considered the possibility of proton transfer reactions through the peptide bond under different environments using the dipeptide and the 12-mer polyglycine α-helix models, in which diglycine is substituted by the 12-mer polyglycine helix. Ab initio molecular orbital calculations were carried out at the B3LYP/6-31+G(d) level of theory. To evaluate the free energies in solution, calculations of the solvation energies were performed using PCM. The correction functions on the calculated solvation energies were provided to reproduce experimental pKa values. The proton transfer reactions through the peptide bond are concluded to be possible in the protein for a wide range of proton acceptors. His complex has two free energy minima along a putative proton transfer pathway in spite of one minimum in the other complexes. The α-helix is estimated to suppress the proton transfer reactions through the peptide bond at the termini of the helix, although it is possible to proceed when the proton affinity of the acceptor is low. Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.  相似文献   

16.
We report synthesis of the modified fluorene polymers tethered to the heterogeneous types of the fluorescent dyes at the cardo carbon for obtaining the dual‐emissive solid materials. A series of the alternating fluorene copolymers modified with pyrene or 9,10‐diphenylanthracene and BODIPY at the cardo carbon based on the red‐emissive donor–acceptor structure were prepared, and their characteristics were examined. From the measurements of the optical properties, the energy transfer efficiencies were evaluated. In summary, variable energy transfer efficiencies were observed between the side chains and from the side chain to the main chain. It was indicated that the energy transfer efficiencies were strongly depended on the types of the energy donor and the detection conditions as such in the solution or film. Furthermore, it was found that the cardo fluorene units can contribute to the suppression of the energy transfer in the condensed state. Finally, the dual‐emissive polymers were obtained in the film states. This is the first example, to the best of our knowledge, not only to offer systematic information on the energy transfer between the dye molecules and the polymer main‐chains via the cardo structure but also to demonstrate the polymer‐based optical materials with the dual‐emission properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2026–2035  相似文献   

17.
Thioflavin T (ThT) is a viscosity-sensitive fluorescent dye and its emission intensity undergoes a significant enhancement upon binding to DNA or amyloid fibrils. This fluorescence light-up feature has been attributed earlier to restriction of structural rearrangements in the excited state that are coupled to an intramolecular charge transfer (ICT) reaction. In this work TDDFT (using B3LYP and CAM-B3LYP functionals) and SA-2-CASSCF calculations were carried out to obtain relaxed excited-state potential energy surfaces (PES) along twisting φ and wagging δ angles that describe mutual orientation of benzothiazole (BTZ) and dimethylaniline (DMA) fragments in ThT. For isolated ThT molecule both methods predict that during structural rearrangements of the initially excited Franck-Condon state, besides twisting along C C bond which connects BTZ and DMA fragments, a considerable wagging motion is expected to occur. Account for solvent effect using polarized continuum model showed qualitative differences in the excited state PES features calculated by SA-2-CASSCF and TDDFT methods. Single-reference TDDFT calculations failed to describe solvation of TICT state and predicted increase of its energy in more polar media.  相似文献   

18.
The adiabatic potential energy surfaces (PES ) which are most likely to be involved in the elementary mechanism presiding over charge-exchange and direct inelastic collisions between O2 molecules and collimated beams of protons are discussed. The general behavior of Diatomics-in-molecule (DIM ) model interactions is analyzed in great detail as a function of the molecular vibrational coordinate and of the other internal nuclear coordinates. The general features of the lower two PES are discussed, and the corresponding nonadiabatic coupling terms between these surfaces are also computed and analyzed. These model results turn out to provide very useful indications on the specific dynamical features that are to be considered responsible for the inelastic, vibronic transitions observed in the target molecule during collisional experiments.  相似文献   

19.
Phycobiliproteinsarethelightharvestingpigmentsforphotosynthesisinalgaeandincludephycoerythrin,phycocyaninandallophycocyanin.Inredandbluealgae,differentkindsofphycobiliproteinsaswellaslinkerpolypeptidesformawellorgnizedsystemwithefficientfunctionsoflig…  相似文献   

20.
Triplet energy transfer (TET) from aromatic donors to 1,3,5,7-cyclooctatetraene (COT) is an extreme case of "nonvertical" behavior, where the transfer rate for low-energy donors is considerably faster than that predicted for a thermally activated (Arrhenius) process. To explain the anomalous TET of COT and other molecules, a new theoretical model based on transition state theory for nonadiabatic processes is proposed here, which makes use of the adiabatic potential energy surfaces (PES) of reactants and products, as computed from high-level quantum mechanical methods, and a nonadiabatic transfer rate constant. It is shown that the rate of transfer depends on a geometrical distortion parameter gamma=(2g(2)/kappa(1))(1/2) in which g stands for the norm of the energy gradient in the PES of the acceptor triplet state and kappa(1) is a combination of vibrational force constants of the ground-state acceptor in the gradient direction. The application of the model to existing experimental data for the triplet energy transfer reaction to COT from a series of pi,pi(*) triplet donors, provides a detailed interpretation of the parameters that determine the transfer rate constant. In addition, the model shows that the observed decrease of the acceptor electronic excitation energy is due to thermal activation of C=C bond stretchings and C-C bond torsions, which collectively change the ground-state COT bent conformation (D(2d)) toward a planar triplet state (D(8h)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号