首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic field-effect transistors are of great importance to electronic devices. With the emergence of various preparation techniques for organic semiconductor materials, the device performance has been improved remarkably. Among all of the organic materials, single crystals are potentially promising for high performances due to high purity and well-ordered molecular arrangement. Based on organic single crystals, alignment and patterning techniques are essential for practical industrial application of electronic devices. In this review, recently developed methods for crystal alignment and patterning are described.  相似文献   

2.
The attachment of π-conjugated chromophores that absorb the radiation with long wavelengths to poly(methylphenylsilylene) ( 1 ) via reactions of its formylated derivative is described. Some of the polymers obtained show improved photostability and higher quantum photogeneration efficiency in comparison with the parent polymer. Photoconductive ultra-thin layers can be prepared from polar derivatives of ( 1 ) by the Langmuir–Blodgett technique.  相似文献   

3.
The n-channel behavior has been occasionally reported in the organic field-effect transistors (OFETs) that usually exhibit p-channel transport only. Reconfirmation and further examination of these unusual device performances should deepen the understanding on the electron transport in organic semiconductors. 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene), a widely examined p-channel material as Au is used for source-drain electrodes, has recently been reported to exhibit electron transport when grown from non-polar solvent on divinyltetramethyldisiloxanebis (benzocyclobutene) (BCB) dielectric, spurring the study on this unusual electron transport. This paper describes FET characteristics of solution-grown TIPS-pentacene single crystals on five polymer gate dielectrics including polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(4-vinyl phenol) (PVP), poly(vinyl alcohol) (PVA) and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)). In addition to the p-channel behavior, electron transport occurs in the crystals on PMMA, PS, thick PVA (40 nm) and a bilayer dielectric of PMMA on P(VDF-TrFE-CFE), while does not on PVP and thin PVA (2 nm). The two distinct FET characteristics are consistent with the previous reported trap effect of hydroxyl groups (in PVP and PVA) and reduced injection barrier by Na+ ions (as impurity in PVA). The highest electron mobility of 0.48 cm2 V-1 s-1 has been achieved in the crystals on PMMA. Furthermore, the electron transport is greatly attenuated after the crystals are exposed to the vapor of a variety of polar solvents and the attenuated electron transport partially recovers if the crystals are heated, indicating the adverse effect of polar impurities on electron transport. By reconfirming the n-channel behavior in the OFETs based on TIPS-pentacene, this work has implications for the design of n-channel and ambipolar OFETs.  相似文献   

4.
Close-up color photographs are taken for crystallites (single crystals surrounded by the grain boundaries) in the colloidal crystals of monodisperse silica spheres (diameter: 110 nm±4.5 nm (standard deviation)). Very large crystallites (34 mm) are observed with the naked eye (for the first time) for the completely deionized and diluted suspensions. Deionization is carefully made with the mixed beds of ion-exchange resins more than 2 weeks old. Size of the crystallites increases sharply as the concentration of spheres decreases, and becomes small at the concentrations slightly higher than the critical concentration of melting toward liquid-like structure. Shape of the crystallites, i.e., mixture of triangle, cubic, pentagonal, hexagonal, cone-like, etc., is recognized in the photographs.  相似文献   

5.
The prediction of substance‐related charge‐transport properties is important for the tayloring of new materials for organic devices, such as organic solar cells. Assuming a hopping process, the Marcus theory is frequently used to model charge transport. Here another approach, which is already widely used for exciton transport, is adapted to charge transport. It is based on the spectral overlap of the vibrational donor and acceptor spectra. As the Marcus theory it is derived from Fermi's Golden rule, however, it contains less approximations, as the molecular vibrations are treated quantum mechanically. In contrast, the Marcus theory reduces all vibrational degrees of freedom to one and treats its influence classically. The approach is tested on different acenes and predicts most of the experimentally available hole mobilities in these materials within a factor of 2. This represents a significant improvement to values obtained from Marcus theory which is qualitatively correct but frequently overestimates the mobilities by factors up to 10. Furthermore, the charge‐transport properties of two derivatives of perylene bisimide are investigated. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
A self-consistent calculation of electronic polarization in organic molecular crystals and thin films is presented in terms of charge redistribution in nonoverlapping molecules in a lattice. The polarization energies P+ and P of a molecular cation and anion are found for anthracene and perelynetetracarboxylic dianhydride (PTCDA), together with binding energies of ion pairs and transport gaps of PTCDA films on metallic substrates. The 500 meV variation of P++P with film thickness agrees with experiment, as do calculated dielectric tensors. Comparisons are made to submolecular calculations in crystals.  相似文献   

7.
This paper summarizes our recent works on theoretical modelling of molecular packing and electronic processes in small-molecule organic solar cells. Firstly, we used quantum-chemical calculations to illustrate exciton-dissociation and charge-recombination processes at the DTDCTB/C60 interface and particularly emphasized the major role of hot charge-transfer states in the exciton-dissociation processes. Then, we systematically analyzed the influence of DTDCTB surfaces with different features on the vacuum vapor deposition growth and packing morphologies of C60 via atomistic molecular dynamics simulations, and found that the formation of crystalline fullerene is the result of an integrated impact of stability, landscape, and molecular orientation of the substrate surfaces. Also, we investigated the impact of different film-processing conditions, such as solvent evaporation rates and thermal annealing, on molecular packing configurations in a neat small-molecule donor material, DPP(TBFu)2, and discussed the correlation between charge mobility and molecular packing via atomistic simulations in combination with electronic-structure calculations and kinetic Monte Carlo simulations.  相似文献   

8.
《Comptes Rendus Chimie》2015,18(9):954-959
A series of D–π–A star-shaped molecules has been investigated theoretically by using density functional theory (DFT) to reveal their optical, electronic, and charge transport properties for applications in organic light-emitting diodes (OLEDs) and organic solar cells (OSCs). The calculated results show that their optical, electronic, and charge transport properties are affected by the different end groups and π-bridges. Our results reveal that the molecules under investigation can serve as OSCs donor materials and/or luminescent materials for OLEDs. In addition, all molecules are expected to be promising candidates for hole- and electron-transport materials. On the basis of the obtained results, we propose a rational way for the design of multifunctional materials for OLEDs and OSCs applications.  相似文献   

9.
The thermal decomposition of four commercial powders and of differently stored single crystals of sodium hydrogen carbonate is studied by power compensation DSC and by optical and FT-IR microscopy. Independently of manufacturer, specified purity and price, the thermal curves of all the commercial powders show a more or less pronounced low temperature peak preceding the one due to the main decomposition. Such small peak is not observed when samples of laboratory recrystallized material are used. However the thermal behaviour of the latter preparation differs remarkably depending on storage conditions: the material kept in closed glass containers decomposes at temperatures higher than those of the material stored in a dessiccator in the presence of concentrated H2SO4. The observation by optical microscopy of the behaviour of the surfaces of single crystals coming from different storage conditions when the temperature is raised in a Kofler heater helps the interpretation of the data collected. The mechanism of the decomposition is discussed and the relevant kinetic parameters reported.  相似文献   

10.
The excitonic effects of biphenyl and 2,2′-bithiophene are investigated within an ab initio framework. For this purpose the Bethe–Salpeter equation for the two-particle Greens function is solved. Therefrom the imaginary part of the dielectric function is derived, which includes the electron–hole interaction in the absorption process. It turns out that these organic molecular crystals, which are built by small molecules, give rise to sizeable exciton binding-energies, which are between 0.7 and 0.8 eV. To study the influence of the intermolecular interaction, the exciton binding energy of crystalline biphenyl is calculated as a function of pressure. The decrease of both, the band gap and the exciton binding energy, results in a slight red-shift of the lowest optically active singlet exciton.  相似文献   

11.
Colloidal single crystals of silica spheres (103 nm in diameter) are formed in the presence of various kinds of salts 1 simple electrolytes, i.e., sodium chloride, calcium chloride and lanthanum chloride, 2 polyelectrolytes such as 3–6 type ionen polymer (polybrene), poly-N-ethylpyridinium bromide, a copolymer ofN-benzyl pyridinium chloride andN-hexadecyl pyridinium bromide, and sodium polyethylene sulfonate, and 3 cationic and anionic detergents, hexadecyltrimethylammonium bromide and sodium dodecylsulfate. Shape and size of their single crystals, phase diagram, and the relationship between the two parameters among the critical concentration of melting, conductance and pH of the crystal-like suspensions have been studied. Colloidal single crystals ofpositively charged spheres have been formed in this study by the method of the charge reversal of spheres through the strong adsorption of cationic polyelectrolytes onto the anionic silica spheres.  相似文献   

12.
The room temperature composition dependences of the lattice parameters, mass density, thermopower, Hall constant, carrier concentration and mobility, and electrical conductivity of GeSexTe1?x (x=0.1 ? 0.4) single crystals grown by the Physical Vapor Transport (PVT) method, indicate that the crystals are non-stoichiometric degenerate semiconductors having p-type conductivity. The main lattice defects in this compound are germanium vacancies. The effects of selenium content on the electrical properties of GeSexTe1?x single crystals are explained qualitatively based on the character of the energy levels and on the non-stoichiometric property of this compound.  相似文献   

13.
Reliable assignments of most of the bands of vibrational molecular spectra suffer from ambiguous interaction of atomic displacements. Various experimental methods must be used to ascertain the assignment. By means of dichroic measurements of vibrational bands additional information can be obtained to reach this goal. Thus FT-IR ATR spectra of single crystals of Cd(DEDTC)2 were recorded. If the molecular site with respect to the crystallographic cell is taken into account, the symmetry of certain vibrational modes can be determined.For aC 2h factor group of the monoclinic cell it is possible to distinguish betweenA u andB u symmetry species by the different dichroic ratios of the vibrational bands. This method supports vibrational assignment being verified by force constant refinement calculations.As a result a correlation between molecular site, symmetry and dichroic ratios of vibrational modes of single crystals is presented.  相似文献   

14.
The introduction of hexyl chains endows the semiconductor with two or three orders of magnitudes enhancement in carrier mobility or current on/off ratio respectively.  相似文献   

15.
High-mobility and strong luminescent materials are essential as an important component of organic photodiodes, having received extensive attention in the field of organic optoelectronics. Beyond the conventional chemical synthesis of new molecules, pressure technology, as a flexible and efficient method, can tune the electronic and optical properties reversibly. However, the mechanism in organic materials has not been systematically revealed. Here, we theoretically predicted the pressure-depended luminescence and charge transport properties of high-performance organic optoelectronic semiconductors, 2,6-diphenylanthracene (DPA), by first-principle and multi-scale theoretical calculation methods. The dispersion-corrected density functional theory (DFT-D) and hybrid quantum mechanics/molecular mechanics (QM/MM) method were used to get the electronic structures and vibration properties under pressure. Furthermore, the charge transport and luminescence properties were calculated with the quantum tunneling method and thermal vibration correlation function. We found that the pressure could significantly improve the charge transport performance of the DPA single crystal. When the applied pressure increased to 1.86 GPa, the hole mobility could be doubled. At the same time, due to the weak exciton coupling effect and the rigid flat structure, there is neither fluorescence quenching nor obvious emission enhancement phenomenon. The DPA single crystal possesses a slightly higher fluorescence quantum yield ~ 0.47 under pressure. Our work systematically explored the pressure-dependence photoelectric properties and explained the inside mechanism. Also, we proposed that the external pressure would be an effective way to improve the photoelectric performance of organic semiconductors.  相似文献   

16.
Charge transport through single molecular neutral monoand di-cobalt(II) complexes with π-conjugated macromolecular wire was investigated.Scanning tunnelling spectroscopy (STS) studies revealed that the mono-cobalt(II) complex showed a pronounced rectifying effect with a large rectification ratio and finely featured NDR peaks,while the di-cobalt(II) complex showed a relatively symmetric electron transport without clear NDR peaks.Th  相似文献   

17.
The ternary phases existing on the quasi binary section CoSi/FeSi and CoSi2/β‐FeSi2 have been investigated by solid state reactions and chemical transport. The solid solution serie CoxFe1‐xSi can be described as a regular solution. The transport behaviour calculated is in good agreement with the experiments. The phases have been characterized by X‐ray powder diffraction, EDX and ICP‐OES. The temperature dependence of the resistivity has been measured from 20 K up to room temperature on single crystals.  相似文献   

18.
The crystal structures and photochromic performance of a single crystal of a diarylethene derivative possessing carboxyl groups, 1,2-bis(5-carboxyl-2-methyl-3-thienyl)perfluorocyclopentene (1 a), and cocrystals of 1 a with 4,4'-, 2,4'-, and 2,2'-bipyridines were examined. In crystal 1 a, a discrete cyclic structure was observed, in which four 1 a molecules are linked through hydrogen bonds between the carboxyl groups. In the homocrystal, photoreactive and photoinactive conformers of 1 a exist in the ratio of 1:1. In the cocrystals of 1 a with bipyridines, O--HN-type hydrogen bonds between 1 a and pyridyl groups were formed, and all 1 a molecules are fixed in a photoreactive conformation. Both the homocrystal 1 a and the cocrystals showed photochromic performances, and color variation from bluish-violet to cyan was observed, depending on the conformation of the packed diarylethene molecules.  相似文献   

19.
In this work, we investigate the effect of morphology and segmental dynamics on ion transport in polymerized lyotropic liquid crystals (polyLLCs) containing 1-butyl-3-methylimidazolium tetrafluoroborate as ionic liquid (IL). We demonstrate that two important factors, which affect ion conduction in polyLLCs, are grain size and chain density at the interface. The polyLLC with large grain size (70 nm) shows significant reduction in ion conductivity (one order of magnitude) compared to its homopolymer/IL mixture. However, the polyLLC with small grain size (20 nm) has little difference in ion conductivity compared to its homopolymer/IL mixture. It is observed that decreasing the chain density enhances the interaction of IL with polymer chains and consequently slows the relaxation of polymer chains. In addition, comparing the dynamics of polymer chains in mixtures of homopolymer/IL and templated LLC mesophases shows that the confinement in LLC structure prolongs the relaxation of polymer chains.  相似文献   

20.
邻苯二酚在合成合硅方钠石分子筛大单晶中的螯合效应   总被引:2,自引:1,他引:2  
通过对合成全硅方钠石(Si-SOD)溶胶的液体^29Si NMR、IR光谱、紫外可见光谱,及其晶化产物的^13C MAS CP NMR3和^29Si NMR的研究表明,邻苯二酚在的反应混合物中能和硅物 生反应而生成硅-本二酚螯合物,该螯合物在水热条件下是亚稳态的,它能缓慢释放出生成分子筛所需要的硅种,使反应体系中的晶核始终处于数量较少状态,从而有利于晶体的缓慢长大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号