首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the widespread use of boronic acids in materials science and as pharmaceutical agents, many aspects of their structure and reactivity are not well understood. In this research the boronic acid dimer, [HB(OH)(2)](2), was studied by second-order M?ller-Plesset (MP2) perturbation theory and coupled cluster methodology with single and double excitations (CCSD). Pople split-valence 6-31+G*, 6-311G**, and 6-311++G** and Dunning-Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets were employed for the calculations. A doubly hydrogen-bonded conformer (1) of the dimer was consistently found to be lowest in energy; the structure of 1 was planar (C(2h)) at most computational levels employed but was significantly nonplanar (C(2)) at the MP2/6-311++G** and CCSD/6-311++G** levels, the result of an intrinsic problem with Pople-type sp-diffuse basis functions on heavy atoms. The dimerization energy, enthalpy, and free energy for the formation of (1) from the exo-endo conformer of the monomer were -10.8, -9.2, and +1.2 kcal/mol, respectively, at the MP2/aug-cc-pVTZ level. Several other hydrogen-bonded conformers of the dimer were local minima on the potential energy surface (PES) and ranged from 2 to 5 kcal/mol higher in energy than 1. Nine doubly OH-bridged conformers, in which the boron atoms were tetracoordinated, were also local minima on the PES, but they were all greater than 13 kcal/mol higher in energy than 1; doubly H-bridged structures proved to be transition states. MP2 and CCSD results were compared to those from the BLYP, B3LYP, OLYP, O3LYP, PBE1PBE, and TPSS functionals with the 6-311++G** and aug-cc-pVTZ basis sets; the PBE1PBE functional performed best relative to the MP2 and CCSD results. Self-consistent reaction field (SCRF) calculations predict that boronic acid dimerization is less favorable in solution than in vacuo.  相似文献   

2.
丙酮酸分子结构与振动光谱的密度泛函理论研究   总被引:1,自引:0,他引:1  
用密度泛函方法BLYP、B3LYP和从头算Hartree-Fock(HF)方法在6-31G*基组水平上对丙酮酸分子的几何结构(甲基的重叠式和交错式两种构象)和振动光谱分别进行了优化和计算,并给出了各种频率所对应的红外强度及拉曼活性,对光谱进行了指认。结果表明:在丙酮酸分子的两种构象中,重叠式比较稳定*B3LYP计算得到的构型参数与实验结果比较一致;在振动频率的计算中,BLYP未标度力场所计算的非CH3伸缩振动基频预测值和实验值的平均绝对偏差为10.4cm-1;而HF标度力场的平均绝对偏差为17.9cm-1。说明两者的结果与实验观测频率比较吻合,但B3LYP的频率计算值偏差(38.3cm-1)较大。根据振动频率的势能分布和红外光谱强度对此分子的振动基频进行了理论归属。  相似文献   

3.
[reaction; see text] Picosecond and nanosecond time-resolved resonance Raman (TR(3)) spectroscopy was employed to investigate the deprotonation/ionization reaction of p-hydroxyacetophenone (HA) after ultraviolet photolysis in water solution. The TR(3) spectra in conjunction with density functional theory (DFT) calculations were used to characterize the structure and dynamics of the excited-state HA deprotonation to form HA anions in near neutral water solvent. DFT calculations based on a solute-solvent intermolecular H-bonded complex model containing up to three water molecules were used to evaluate the H-bond interactions and their influence on the deprotonation reaction and the structures of the intermediates. The deprotonation reaction was found to occur on the triplet manifold with a planar H-bonded HA triplet complex as the precursor species. The HA triplet species is generated within several picoseconds and then decays with a approximately 10 ns time constant to produce the HA triplet anion species after 267 nm photolysis of HA in water solution. The triplet anion species was observed to decay with a time constant of about 90 ns into the ground-state anion species that was found to have a lifetime of about 200 ns. The DFT calculations on the H-bonded complexes of the anion triplet and ground-states species suggest that these anion species are H-bonded complexes with planar quinonoidal structures containing two water molecules H-bonded, respectively, with oxygen lone pairs of the carbonyl and deprotonated hydroxyl moieties. A deactivation scheme of the photoexcited HA in regard to the deprotonation reaction in neutral water solutions was proposed. With the above dynamic and structural information available, we briefly discuss the possible implications of the model HA photochemistry in water solutions for the photodeprotection reactions of related p-HP phototrigger compounds in aqueous solutions.  相似文献   

4.
5.
6.
The intrinsic acidity and basicity of a series of beta-chalcogenovinyl(thio)aldehydes HC([double bond]X)[bond]CH[double bond]CH[bond]CYH (X=O, S; Y=Se, Te) were investigated by B3LYP/6-311+G(3df,2p) density functional and G2(MP2) calculations on geometries optimized at the B3LYP/6-31G(d) level for neutral molecules and at the B3LYP/6-31+G(d) level for anions. The results showed that selenovinylaldehyde and selenovinylthioaldehyde should behave as Se bases in the gas phase, because the most stable neutral conformer is stabilized by an X[bond]H...Se (X=O, S) intramolecular hydrogen bond (IHB). In contrast the Te-containing analogues behave as oxygen or sulfur bases, because the most stable conformer is stabilized by typical X...Y[bond]H chalcogen-chalcogen interactions. These compounds have a lower basicity than expected because either chalcogen-chalcogen interactions or IHBs become weaker upon protonation. Similarly, they are also weaker acids than expected because deprotonation results in a significantly destabilized anion. Loss of the proton from the X[bond]H or Y[bond]H groups is a much more favorable than from the C[bond]H groups. Therefore, for Se compounds the deprotonation process results in loss of the X[bond]H...Se (X=O, S) IHBs present in the most stable neutral conformer, while for Te-containing compounds the stabilizing X...Y[bond]H chalcogen-chalcogen interaction present in the most stable neutral conformer becomes repulsive in the corresponding anion.  相似文献   

7.
Eight of the most stable conformers of N-methylglycine (NMG) and five of N,N-dimethylglycine (DMG) were analyzed by high level ab initio calculations. Since NMG has only one amino hydrogen and a carboxylic acid hydrogen, it is capable of the formation of various types of hydrogen-bonded conformers and as a result is ideally suited to studying the importance of hydrogen-bonding on the relative stabilities of the various types of conformers of glycine and N-alkylated glycines. Comparisons of the relative energies of the various NMG and DMG conformers that have different types and number of hydrogen bonds (H-bonds) reveal the importance of hydrogen bonds to the stability of the different types of conformers. For NMG, conformer Ib which has two types of H-bonds and a dipole moment of 1.2 debyes is the most stable. Conformer Ib is similar to that of the most stable conformer of glycine. For DMG, on the other hand, IIc is the most stable conformer. IIc has a dipole moment of 5.6 debyes (compared to a value of 1.1 debyes for another of its conformers, Ic) and only one H-bond which involves the carboxylic acid and amino functionalities. The stability of IIc is attributed to the relative strength of the type H-bond formed — a similar type H-bond of glycine and NMG is predicted to be weaker. Thus, for a particular conformer, the relative strength and number of possible H-bonds that can be formed, and not necessarily the magnitude of the dipole moment, play key roles in the relative stability of amino acid conformers in the gas phase.  相似文献   

8.
The conformational energies of 1-amino-2-propanol, 2-amino-1-propanol and 1,2-diaminopropane are studied using ab initio molecular orbital theory employing minimal (STO-3G) and extended (4-31G) basis sets. Calculations at both levels of theory generally favor conformations stabilized by internal H-bonding for all molecules considered. Results are first presented for conformations employing assumed geometries. Since the conformational energy differences as found by the initial set of calculations are in some cases rather small it then becomes necessary to introduce geometry optimizations into the study at the minimal STO-3G level. In addition, to get a better estimate of the energy differences of the various conformations 4-31G calculations are performed on the STO-3G optimized structures. These latter results indicate the following, (a) For 1-amino-2-propanol only one conformation that is stabilized by intramolecular H-bonding is low in energy; this has the methyl and amino groups anti. The other H-bonded conformer, where the methyl and amino groups are gauche, is predicted to be ca. 1.2 kcal mol?1 less stable. Similar findings for this molecule have recently been provided by micro-wave spectroscopy. (b) For 2-amino-1-propanol the two H-bonded conformers are only separated by about 0.5 kcal mol?1, with the anti conformer being more stable. Micro-wave spectroscopy again supports these calculations. (c) For 1,2-diaminopropane the gauche conformer is predicted to be of rather high energy (ca. 2.5 kcal mol?1) compared to the corresponding anti H-bonded conformer. The value of 2.5 kcal mol?1should be taken as an upper limit, since the geometry optimization of the gauche conformer of 1,2-diaminopropane is incomplete compared to the optimization carried out for the anti conformer.  相似文献   

9.
2-Chloroethylisocyanide (ClCH(2)CH(2)N≡C) has been synthesized, and its microwave spectrum has been investigated in the 20-97 GHz spectral region. The spectra of (35)Cl and (37)Cl isotopologues of two conformers have been assigned. The Cl-C-C-N chain of atoms is antiperiplanar in one of these rotamers and synclinal in the second. The energy difference between the two forms has been obtained from relative intensity measurements. It was found that the antiperiplanar conformer is favored over the synclinal form by 4.3(8) kJ/mol. Quantum chemical calculations at the CCSD/cc-pVTZ and B3LYP/cc-pVTZ levels of theory have been performed. Most, but not all, of the spectroscopic constants predicted in these calculations are in good agreement with their experimental counterparts. The theoretical calculations correctly predict that the 2-chloroethylisocyanide exists as a mixture of an antiperiplanar and a synclinal conformer, with the former about 3.5 kJ/mol more stable than the latter. Both methods of calculations find that the antiperiplanar rotamer has a symmetry plane. The dihedral angle formed by the Cl-C-C-N link of atoms of the synclinal form is 67° according to the CCSD calculations. It is estimated from a comparison with the experimental rotational constants that this dihedral angle is uncertain by ±3°.  相似文献   

10.
In this paper the conformational landscape of amphetamine in the neutral ground state is examined by both spectroscopy and theory. Several spectroscopic methods are used: laser-induced fluorescence (LIF), resonance-enhanced two-photon ionization (R2PI), dispersed fluorescence and IR/R2PI hole burning spectroscopy. The latter two methods provide for the first time vibrationally resolved spectra of the neutral ground state of dl-amphetamine and the amphetamine–(H2O)1,2 complexes. Nine stable conformers of the monomer were found by DFT (B3LYP/6-311++G(d,p)) and ab initio (MP2/6-311++G(d,p)) calculations. For conformer analysis the vibrations observed in the IR/R2PI hole burning and dispersed fluorescence spectra obtained from single vibronic levels (SVLF) of a selected conformer were compared with the results of an ab initio normal mode analysis. By this procedure three S0 → S1 transitions in the R2PI spectrum were assigned to three different conformer structures. Another weak transition earlier attributed to another conformer could be assigned to a vibronic band of one of the three conformers. Furthermore spectra of amphetamine–(H2O)1,2 are tentatively assigned.  相似文献   

11.
Geometric parameters, harmonic and anharmonic vibrational frequencies, conformer energy differences and barriers to internal rotation were obtained for dicyclopropyl ketone (DCPK) in the ground electronic state through MP2, DFT, CCSD and CCSD(T) calculations. VFPA was used to improve the estimations of conformer energy differences and heights of barriers to internal rotation. The ab initio calculations demonstrated that there are three stable conformations of DCPK: the cis–cis, the cis–trans and the gauche–gauche. The energy of the gauche–gauche conformer is noticeably higher than the energy of the two other conformers, so this conformer was not found experimentally. To study the conformational dynamics of the DCPK molecule, one- and two-dimensional sections of the potential energy surface corresponding to the rotations of the cyclopropyl groups were calculated. These sections were used to calculate torsion transition energies and vibrational wave functions in anharmonic approach. It was found that there is a strong coupling of large-amplitude torsion motions in the area of the cis–cis and gauche–gauche conformers.  相似文献   

12.
(S)-(?)-Perillyc acid (4-isopropenylcyclohexene-1-carboxylic acid) is an intermediate in the limonene and pinene pathway degradation and its measurement in urine is used to monitor cancer patients receiving oral limonene. For the first time, a theoretical study of the conformational preference in the monomer and H-bonded dimers complemented with a theoretical and experimental analysis of the infrared, raman, and vibrational vircular dichroism spectra of (S)-(?)-perillyc acid in solution and solid phases is presented. With regard to the monomer, theoretical calculations revealed the existence of two conformers depending on the position of the isopropenyl group (axial and equatorial) and 24 rotamers (12 equatorials and 12 axials). The study of the H-bonded dimers revealed great complexity in the conformational landscape with a total of 36 structures studied. Herein, from a reliable assignment of the IR and Raman spectra and with help from the study of the VCD spectrum of the title compound, the most stable rotamers of the H-bonded complexes have been detected experimentally in the liquid and solid phases. Additionally, natural bond orbitals (NBO) analysis indicates an electronic delocalization between the two subunits in the dimer. The IR, Raman, and VCD are helpful and complementary techniques to characterize flexible systems, such as terpenes, which present several conformers and H-bonded aggregates.  相似文献   

13.
14.
Raman spectra of an aqueous solution of glycine (Gly) have been recorded in the range of 400-2000 cm−1. In aqueous solution, glycine molecules exist in their zwitterionic form, having two opposite charged poles, COO and NH3+. The zwitterionic structure of glycine (ZGly) is stabilized by the hydrogen bond interaction of water (W) molecules. In the present report, we have optimized the ground state geometries of different hydrogen bonded complexes of [ZGly + (W)n=1-5] in aqueous medium using DFT calculations at the B3LYP/6-311++G(d) level of theory. A comparative discussion on the structural details and binding energies (BEs) of each conformer has been also done. The theoretical Raman spectra were calculated corresponding to the most stable [ZGly + (W)n=1-5] conformers. The theoretically simulated Raman spectra of each stable conformer were compared with experimentally observed Raman spectra to explore the number of water molecules needed for stabilizing the structure of ZGly. The theoretically simulated Raman spectra corresponding to the most stable conformer of [ZGly + (W)5] having a BE of −22.8 kcal/mol, are matching nicely with the experimentally observed Raman spectra. Thus, on the basis of the above observations, we conclude that the conformer, [ZGly + (W)5] is the most probable conformer in the aqueous medium. We also believe that in the conformer, [ZGly + (W)5] the five water molecules are arranged around the ZGly in such a way that the effect of steric hindrance is less compared to the other conformers. The dipole-dipole interaction potential (DDP) is also calculated corresponding to the strongest hydrogen bond for each [ZGly + (W)n=1-5] conformer.  相似文献   

15.
The FT-IR spectrum of 2,6-di-tert-butyl-4-methylphenol [butylated hydroxy toluene] was recorded in the region 4000-400 cm(-1). The FT-Raman spectrum of butylated hydroxy toluene was also recorded in the region 3500-50 cm(-1). The molecular structure and vibrational frequencies of butylated hydroxy toluene (BHT) have been investigated with combined experimental and theoretical study. Two stable conformers of the title compound were obtained from the result of geometry optimizations of these possible conformers. The conformer 1 is (approximately 2.6 kcal/mol) more stable than conformer 2. Geometry optimizations and vibrational frequency calculations were performed by BLYP and B3LYP methods using 6-31G(d), 6-31G(d,p) and 6-31+G(d,p) as basis sets. The scaled frequencies were compared with experimental spectrum and on the basis of this comparison; assignments of fundamental vibrational modes were examined. Comparison of the experimental spectra with harmonic vibrational wavenumbers indicates that B3LYP/6-31G(d) results are more accurate. Predicted electronic absorption spectra of BHT from TD-DFT calculation have been analyzed and compared with the experimental UV-vis spectrum. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule.  相似文献   

16.
A set of exchange‐correlation functionals, including BLYP, PBE0, B3LYP, BHandHLYP, CAM‐B3LYP, LC‐BLYP, and HSE, has been used to determine static and dynamic nonresonant (nuclear relaxation) vibrational (hyper)polarizabilities for a series of all‐trans polymethineimine (PMI) oligomers containing up to eight monomer units. These functionals are assessed against reference values obtained using the Møller–Plesset second‐order perturbation theory (MP2) and CCSD methods. For the smallest oligomer, CCSD(T) calculations confirm the choice of MP2 and CCSD as appropriate for assessing the density functionals. By and large, CAM‐B3LYP is the most successful, because it is best for the nuclear relaxation contribution to the static linear polarizability, intensity‐dependent refractive index second hyperpolarizability, static second hyperpolarizability, and is close to the best for the electro‐optical Pockels effect first hyperpolarizability. However, none of the functionals perform satisfactorily for all the vibrational (hyper)polarizabilities studied. In fact, in the case of electric field‐induced second harmonic generation all of them, as well as the Hartree–Fock approximation, yield the wrong sign. We have also found that the Pople 6–31+G(d) basis set is unreliable for computing nuclear relaxation (hyper)polarizabilities of PMI oligomers due to the spurious prediction of a nonplanar equilibrium geometry. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Ab initio molecular orbital theory with the LANL2DZ, 3-21G, 6-31G(d), 6-31+G(d), 6-31+G(d,p), 6-311+G(d,p),6-31G(2d), 6-31G(3d), and 6-311G(d,p) basis sets and density functional theory (B3P86, B3LYP, B3PW91) have been used to calculate the structures, relative energies, enthalpies, entropies, and free energies of the chair, 1,4-twist, and 2,5-twist conformers of tetrahydro-2H-thiopyran (tetrahydrothiopyran, thiacyclohexane, thiane, pentamethylene sulfide). All levels of theory calculated similar energy values and the effect of basis sets on the calculated energies was small. The chair conformer of tetrahydro-2H-thiopyran was 5.27 kcal/mol more stable than the 1,4-twist conformer, which was slightly more stable (0.81 kcal/mol) than the 2,5-twist conformer. The chair–1,4-twist and chair–2,5-twist free energy differences ( G°c – t) were 5.44 and 5.71 kcal/mol, respectively. Intrinsic reaction coordinate [IRC, minimum-energy path (MEP)] calculations connected the transition state between the chair and the 2,5-twist conformers. This transition state is 9.73 kcal/mol higher in energy than the chair conformer and the energy differences between the chair and the 1,4-boat and 2,5-boat transition states were 8.07 and 6.38 kcal/mol, respectively. Stereoelectronic hyperconjugative interactions were observed in the chair, 1,4-twist, and 2,5-twist conformers of tetrahydro-2H-thiopyran. The stereoelectronic hyperconjugative effects in the chair conformer of tetrahydro-2H-thiopyran have been compared to those in the respective chair conformers of tetrahydro-2H-pyran, tetrahydro-2H-selenane, and tetrahydro-2H-tellurane.  相似文献   

18.
The conformational behavior and structural stability of 2-butanimine were investigated by utilizing ab initio calculations with 6-311++G** basis set at HF, MP2, B3LYP and BLYP levels. The vibrational frequencies of 2-butanimine were computed. Complete vibrational assignments were made on the basis of normal coordinate calculations for stable conformer of the molecule. HF results without scaled quantum mechanical (SQM) force field procedure considered are in bad agreement with experimental values. Of the two DFT methods, BLYP reproduces the observed fundamental frequencies most satisfactorily with the mean absolute deviation of the non-CH stretching modes less than 21.3 cm(-1). The results indicate that BLYP calculation is a very promising approach for understanding the observed spectral features.  相似文献   

19.
The gas phase molecular structures and conformational compositions of 2-fluorobenzoyl chloride, 2-chlorobenzoyl chloride, and 2-bromobenzoyl chloride have been investigated using gas electron diffraction data obtained from experiments performed in the laboratories of the University of Oslo and Oregon State University. The refinements on the experimental data have been aided by normal coordinate calculations as well as extensive ab initio molecular orbital and density functional theory calculations up to the levels of MP4(SDQ) and B3LYP with larger basis sets up to the level of 6-311 + G(2d,p) for the computed molecular geometries, electronic energies, vibrational zero-point energies and entropy corrections, gas mixture conformational compositions, and MP2(fc) quantum mechanical force fields. The three title molecules each exist in the gas phase as two stable non-planar conformers anti and gauche with respect to the halogen atom positions with anti the lower energy conformer in each case. Among the three title molecules there have been found considerable experimental and theoretical support for several trends in molecular or conformational behavior with increasing ortho halogen atomic size: An increasing although disputable trend in the C=O bond distance values; an increasing trend in the average phenyl ring C–C bond distance values; an increasing trend in the contribution of the gauche conformer to the gaseous mixture lowering the standard free energy difference values (ΔG o) correspondingly; and an increasing deviation from full planarity (C s symmetry) in both the anti and the gauche conformers of the title molecules with increasing ortho halogen atomic size. Only in the anti conformer of 2-fluorobenzoyl chloride does the experimental data refinements suggest close to full planarity for these 2-halobenzoyl chloride molecules.  相似文献   

20.
IR spectroscopy and statistical mechanic calculations were used to study the influence of isobaric heating (p 250 bar, T 493–633 K) on H-bond distribution in precritical water. As the temperature rises, the intermolecular water H-bond network is much destroyed, and the fractions of H-bonded n-mers are redistributed. At temperatures close to critical, water has a cluster-like structure with prevalence of dimers and trimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号