首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Until now,the onset velocity of circulating fluidization in liquid-solid fluidized beds has been defined by the turning point of the time required to empty a bed of particles as a function of the superficial liquid velocity,and is reported to be only dependent on the liquid and particle properties.This study presents a new approach to calculate the onset velocity using CFD-DEM simulation of the particle residence time distribution(RTD).The onset velocity is identified from the intersection of the fitted lines of the particle mean residence time as a function of superficial liquid velocity.Our results are in reasonable agreement with experimental data.The simulation indicates that the onset velocity is influenced by the density and size of particles and weakly affected by riser height and diameter.A power-law function is proposed to correlate the mean particle residence time with the superficial liquid velocity.The collisional parameters have a minor effect on the mean residence time of particles and the onset velocity,but influence the particle RTD,showing some humps and trailing.The particle RTD is found to be related to the particle trajectories,which may indicate the complex flow structure and underlying mechanisms of the particle RTD.  相似文献   

2.
Until now, the onset velocity of circulating fluidization in liquid–solid fluidized beds has been defined by the turning point of the time required to empty a bed of particles as a function of the superficial liquid velocity, and is reported to be only dependent on the liquid and particle properties. This study presents a new approach to calculate the onset velocity using CFD–DEM simulation of the particle residence time distribution (RTD). The onset velocity is identified from the intersection of the fitted lines of the particle mean residence time as a function of superficial liquid velocity. Our results are in reasonable agreement with experimental data. The simulation indicates that the onset velocity is influenced by the density and size of particles and weakly affected by riser height and diameter. A power-law function is proposed to correlate the mean particle residence time with the superficial liquid velocity. The collisional parameters have a minor effect on the mean residence time of particles and the onset velocity, but influence the particle RTD, showing some humps and trailing. The particle RTD is found to be related to the particle trajectories, which may indicate the complex flow structure and underlying mechanisms of the particle RTD.  相似文献   

3.
Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) is a commonly used numerical method to model gas-solid flow in fluidised beds and other multiphase systems. A significant limitation of CFD-DEM is the feasibility of the realistic simulation of large numbers of particles. Coarse-graining (CG) approaches, through which groups of multiple individual particles are represented by single, larger particles, can substantially reduce the total number of particles while maintaining similar system dynamics. As these three CG models have not previously been compared, there remains some debate, however, about the best practice in the application of CG in CFD-DEM simulations. In this paper, we evaluate the performance of three typical CG methods based on simulations of a bubbling fluidised bed. This is achieved through the use of a numerical validation framework, which makes full use of the high-resolution 3D positron emission particle tracking (PEPT) measurements to rigorously validate the outputs of CFD-DEM simulations conducted using various different coarse-graining models, and various different degrees of coarse-graining. The particle flow behaviours in terms of the particle occupancy field, velocity field, circulation time, and bubble size and velocity, are comprehensively analysed. It is shown that the CG simulation starts to fail when the size ratio between the bed chamber and the particles decreases to approximately 20. It is also observed, somewhat surprisingly, that the specific CG approach applied to interparticle contact parameters does not have a substantial effect on the simulation results for the bubbling bed simulations across a wide range of CG factors.  相似文献   

4.
The CFD-DEM model was developed to simulate solid exchange behavior between two half beds in a bench-scale two-dimensional dual-leg fluidized bed (DL-FB). Power spectrum density (PSD) analysis was applied to obtain the dominant frequency (F) of the simulated differential particle number (APLR) between the two half beds. Effects of fluidization velocity (u) and bed material inventory (H) on the solid exchange behavior were studied using the CFD-DEM model. Not only snapshots of the simulated particle flow patterns using the OpenGL code but also the dominant frequency of APLR was similar to the experimental results. The simulation results show that higher fluidization velocity assists the exchange of more particles between the two half beds, but the dispersion of clusters on the bed surface into single particles decreases the cluster exchange frequency. A greater bed material inventory results in more intense cluster exchange. The cluster exchange frequency decreases with an increase of the bed material inventory.  相似文献   

5.
Interaction between turbulence and particles is investigated in a channel flow. The fluid motion is calculated using direct numerical simulation (DNS) with a lattice Boltzmann (LB) method, and particles are tracked in a Lagrangian framework through the action of force imposed by the fluid. The particle diameter is smaller than the Kolmogorov length scale, and the point force is used to represent the feedback force of particles on the turbulence. The effects of particles on the turbulence and skin friction coefficient are examined with different particle inertias and mass loadings. Inertial particles suppress intensities of the spanwise and wall-normal components of velocity, and the Reynolds shear stress. It is also found that, relative to the reference particle-free flow, the overall mean skin-friction coefficient is reduced by particles. Changes of near wall turbulent structures such as longer and more regular streamwise low-speed streaks and less ejections and sweeps are the manifestation of drag reduction.  相似文献   

6.
1. Introduction The mechanisms of impact and rebound of solid parti- cles in particulate flow systems are of interest over a wide range of application areas such as fluidized beds, pneu- matic transport, filtration processes, erosion and pollution control of suspended particles. In many cases, the colli- sions of particles against themselves and against walls may affect the properties of the mixture. Efforts have been made to describe the fundamental mechanics of particle collisions. The conta…  相似文献   

7.
8.
吴坤  刘向军  戴椰凌 《力学学报》2021,53(10):2752-2761
颗粒移动床在工业领域应用广泛, 发展实用可靠的颗粒移动床模型具有理论和应用价值. 本文基于颗粒流μ(I)模型, 补充局部颗粒体积分数与颗粒局部压力和局部颗粒流密度的关系式, 将移动床内密集颗粒处理成可压缩拟流体, 建立了颗粒流单相可压缩流μ(I)模型, 并建立了颗粒流?壁面摩擦条件, 在计算中对颗粒流拟黏度和拟压力项进行正则化处理. 采用上述模型与方法对3种典型散料在移动床缩口料仓内的流动进行模拟, 与实验对比, 得到了玻璃珠、刚玉球和粗沙的μ(I)模型参数, 分析了3种不同散料在料仓内的颗粒速度、体积分数等分布特性, 模拟结果较好地揭示了料仓内不同物料的整体流和漏斗流特性; 进而以玻璃珠为例, 对移动床颗粒单管绕流流动进行了模拟, 所得结果合理揭示了管流附近的流动特性. 计算结果表明, 对于本文的计算工况, 颗粒体积分数变化最大范围为0.510 ~ 0.461, 绝大部分区域流动惯性数小于0.1, 改进的单相μ(I)模型能合理预测出密集颗粒流移动床内的流动特性, 方法可行且较多相流算法能明显减小计算量.   相似文献   

9.
In many particle‐based simulations, measurement of local mean flow velocity and other continuum‐based properties are of utmost importance. Macroscopic quantities, such as mean flow velocity, temperature, and density, can be estimated by averaging the corresponding microscopic behavior of the particles. The two main subjects that should be considered in the averaging over the particles in a specific problem are spatial and temporal behaviors of them. In this paper, we study the latter. Because of the chaotic nature of the collisions among the molecules and consequently their random path, extracted macroscopic values fluctuate about their average values causing statistical errors. In this paper, an averaging method called SAM‐Modified‐CAM (SMC) will be proposed for the measurement of mean velocity that reduces statistical errors in its calculation. This proposal is based on the study conducted here on the implementations of two common averaging methods, sample‐averaged measurement (SAM) and cumulative average measurement (CAM) in molecular dynamics. In addition, convergence of mean flow velocity measurement is thoroughly discussed, and a convergence criterion is proposed for this purpose. Implementation of the proposed method in different test cases has approved its reliable performance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The flow of solid particles in air streams involves a great deal of variables and complex phenomena, difficult to analyse. In practice the flow quantities in gas-solid flows are predicted by the use of empirical correlations of data or semi-empirical methods. The predictive power of these methods varies substantially between different systems. This paper presents an analytical approach to the subject of gas-solid flows, based on a turbulent model. The mixture is modeled as a variable density fluid flowing in a duct; the equations for the Reynolds stress incorporate the variation of velocity and density together, and yield the velocity profile of the flow and average quantities of interest such as the mass flux, the friction factor, the average density and average areas occupied by each phase. The predicted values for the friction factor are compared with known correlations emanating from experimental data. It is found that there is a very good agreement between the predicted values and the experimental correlations.  相似文献   

11.
鼓泡流化床因其较高的传热特性以及较好的相间接触已经被广泛应用于工业生产中,而对鼓泡流态化气固流动特性的充分认知是鼓泡流化床设计的关键.在鼓泡流化床中,气泡相和乳化相的同时存在使得床中呈现非均匀流动结构,而这种非均匀结构给鼓泡流化床的数值模拟造成了很大的误差.基于此,以气泡作为介尺度结构,建立了多尺度曳力消耗能量最小的稳定性条件,构建了适用于鼓泡流化床的多尺度气固相间曳力模型.结合双流体模型,对A类和B类颗粒的鼓泡流化床中气固流动特性进行了模拟研究,分析了气泡速度、气泡直径等参数的变化规律.研究表明,与传统的曳力模型相比,考虑气泡影响的多尺度气固相间曳力模型给出的曳力系数与颗粒浓度的关系是一条分布带,建立了控制体内曳力系数与局部结构参数之间的关系.通过模拟得到的颗粒浓度和速度与实验的比较可以发现,考虑气泡影响的多尺度曳力模型可以更好地再现实验结果.通过A类和B类颗粒的鼓泡床模拟研究发现,A类颗粒的鼓泡床模拟受多尺度曳力模型的影响更为显著.   相似文献   

12.
A direct numerical simulation was used along with a Lagrangian particle tracking technique to study particle motion in a horizontal, spatially developing turbulent boundary layer along an upper-wall (with terminal velocity directed away from the wall). The objective of the research was to study particle diffusion, dispersion, reflection, and mean velocity in the context of two parametric studies: one investigated the effect of the drift parameter (the ratio of particle terminal velocity to fluid friction velocity) for a fixed and finite particle inertia, and the second varied the drift parameter and particle inertia by the same amount (i.e. for a constant Froude number). A range of drift parameters from 10−4 to 100 were considered for both cases. The particles were injected into the simulation at a height of four wall units for several evenly distributed points across the span and a perfectly elastic wall collision was specified at one wall unit.Statistics collected along the particle trajectories demonstrated a transition in particle movement from one that is dominated by diffusion to one that is dominated by gravity. For small and intermediate sized particles (i.e. ones with outer Stokes numbers and drift parameters much less than unity) transverse diffusion away from the wall dominated particle motion. However, preferential concentration is seen near the wall for intermediate-sized particles due to inhomogeneous turbulence effects (turbophoresis), consistent with previous channel flow studies. Particle–wall collision statistics indicated that impact velocities tended to increase with increasing terminal velocity for small and moderate inertias, after which initial conditions become important. Finally, high relative velocity fluctuations (compared to terminal velocity) were found as particle inertia increased, and were well described with a quasi-one-dimensional fluctuation model.  相似文献   

13.
This study is devoted to the explanation of different characteristics of magnetic filtration and the way these characteristics affect the important filtration parameters. Magnetic fields in pores and the force effect of these fields on magnetic particles and the magnetization properties of packed beds composed of ferromagnetic spheres and metal chips are evaluated. The profile of accumulation and capture regions of the particles, the variation of the fluid velocity in these regions and analytic expressions of particle capture radius are presented. The effects of filtration regime parameters on magnetic filter performance were investigated. An analytical expression has been obtained for the dependence of the logarithmic efficiency coefficient on filtration velocity, the geometry of filter elements, the particle size and other parameters of filtration. The stationary and non-stationary equations of the magnetic filtration processes are given. An expression of magnetic filter performance is shown with dimensionless parameters obtained from the filtration system. These relations are useful for calculations in engineering practice, including the design of magnetic filters, provision of suggestions on construction, and optimization and control of filter operation.  相似文献   

14.
A statistical model for describing the motion and collisions of a bidisperse mixture of particles in anisotropic turbulent flows is presented. The model is based on a kinetic equation for the particle velocity probability density function (PDF). The results are compared with the data of a direct numerical simulation of the sedimentation of a bidisperse mixture of particles under the action of the gravity force.  相似文献   

15.
LBM-DEM耦合方法通常是指一种颗粒流体系统直接数值模拟算法,即是一种不引入经验曳力模型的计算方法,颗粒尺寸通常比计算网格的长度大一个量级,颗粒的受力通过表面的粘性力与压力积分获得,其优点是能描述每个颗粒周围的详细流场,产生详细的颗粒-流体相互作用的动力学信息,可以探索颗粒流体界面的流动、传递和反应的详细信息及两相相互作用的本构关系,但其缺点是计算量巨大,无法应用于真实流化床过程模拟。本文针对气固流化床中的流体以及固体颗粒间的多相流体力学行为,建立了一种稠密气固两相流的介尺度LBMDEM模型,即LBM-DEM耦合的离散颗粒模型,实现在颗粒尺度上流化床的快速离散模拟。该耦合模型采用格子玻尔兹曼方法(LBM)描述气相的流动和传递行为,离散单元法(DEM)用于描述颗粒相的运动,并利用能量最小多尺度(EMMS)曳力解决气固耦合不成熟问题,以提高其模拟精度。通过经典快速流态化的模拟,验证了介尺度LBM-DEM耦合模型的有效性。模拟结果表明介尺度LBM-DEM模型是一种探索实验室规模气固系统的有力手段。  相似文献   

16.
The implementation of solid-fluid boundary condition has been a major challenge for dissipative particle dynamics(DPD) method. Current implementations of boundary conditions usually try to approach a uniform density distribution and a velocity profile close to analytical solution. The density oscillations and slip velocity are intentionally eliminated, and different wall properties disappear in the same analytical solution. This paper develops a new wall model that combines image and frozen part...  相似文献   

17.
This paper presents simulation results of the density segregation in a dense binary gas fluidized bed using a multi-fluid model from Chao et al. (2011). The segregation behavior of two types of particles with approximately same particle diameters and different particle densities was studied and validated using the experimental data from Formisani et al. (2008). Some detailed information regarding the gas, particle velocity profiles, the distributions of the particle volume fractions and the flotsam-to-total particle volume fraction ratios is presented. The simulation results show that the simulated axial average flotsam-to-total particle volume fraction ratio distribution agrees reasonably with the experimental data of Formisani et al. (2008). The binary particle velocities are closely coupled though the segregation exists. The segregation behavior and the particle velocity profiles are superficial gas velocity dependent. The number and distribution of particle velocity vortices change dramatically with superficial gas velocity: at a comparatively low superficial gas velocity, the particles mainly segregate axially, and at a comparatively high superficial gas velocity, the particles segregate both axially and radially.  相似文献   

18.
In this paper, a new method to impose 2‐D solid wall boundary conditions in smoothed particle hydrodynamics is presented. The wall is discretised by means of a set of virtual particles and is simulated by a local point symmetry approach. The extension of a previously published modified virtual boundary particle (MVBP) method guarantees that arbitrarily complex domains can be readily discretised guaranteeing approximate zeroth and first‐order consistency. To achieve this, three important new modifications are introduced: (i) the complete support is ensured not only for particles within one smoothing length distance, h, from the boundary but also for particles located at a distance greater than h but still within the support of the kernel; (ii) for a non‐uniform fluid particle distribution, the fictitious particles are generated with a uniform stencil (unlike the previous algorithms) that can maintain a uniform shear stress on a particle‐moving parallel to the wall in a steady flow; and (iii) the particle properties (density, mass and velocity) are defined using a local point of symmetry to satisfy the hydrostatic conditions and the Cauchy boundary condition for pressure. The extended MVBP model is demonstrated for cases including hydrostatic conditions for still water in a tank with a wedge and for curved boundaries, where significant improved behaviour is obtained in comparison with the conventional boundary techniques. Finally, the capability of the numerical scheme to simulate a dam break simulation is also shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
An application of a new flow measurement technique is described which allows for the non-intrusive simultaneous measurement of flow velocity, density, and viscosity. The viscosity information can be used to derive the flow field temperature. The combination of the three measured variables and the perfect-gas law then leads to an estimate of the flow field thermodynamic pressure. Thus, the instantaneous state of a flow field can be completely described. Three-state anemometry (3SA), a derivative of particle image velocimetry (PIV), which uses a combination of three monodisperse sizes of styrene seeding particles is proposed. A marker seeding is chosen to follow the flow as closely as possible, while intermediate and large seeding populations provide two supplementary velocity fields, which are also dependent on fluid density and viscosity. A simplified particle motion equation, aimed at turbomachinery applications, is then solved over the whole field to provide both density and viscosity data. The three velocity fields can be separated in a number of ways. The simplest and that proposed in this paper is to dye the different populations and view the region of interest through interferometric filters. The two critical aspects needed to enable the implementation of such a technique are a suitable selection of the diameters of the particle populations, and the separation of the velocity fields. There has been extensive work on the seeding particle behaviour which allows an estimate of the suitable particle diameters to be made. A technique is described in this paper to allow the separation of particles in a range of micrometer sized velocity fields through fluorescence (separation through intensity also being possible). Some preliminary results by direct numerical simulation (DNS) of a 3SA image are also presented. The particle sizes chosen were 1 μm and 5 μm, tested on the near-wake flow past a cylinder to investigate viscosity only, assuming uniform flow density. The accuracy of the technique, derived from simulations of swirling flows, is estimated as 0.5% RMS for velocity, 2% RMS for the density and viscosity, and 4% RMS for the temperature estimate. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Computation of a turbulent dilute gas–solid channel flow has been undertaken to study the influence of using wall-corrected drag coefficients and of the lift force on the dispersed phase characteristics. The incompressible Navier–Stokes equations governing the carrier flow were solved by using a direct numerical simulation approach and coupled with a Lagrangian particle tracking. Calculations were performed at Reynolds number based on the wall-shear velocity and channel half-width, Reτ ≈ 184, and for three different sets of solid particles. For each particle set, two cases were examined, in the first one the particle motion was governed by both drag and lift wall-corrected forces, whereas in the other one, the standard drag force (not corrected) was solely acting. The lift force model used represents the most accurate available expression since it accounts for weak and strong shear as well as for wall effects. For this study, we considered elastic collisions for particles contacting the walls and that no external forces were acting. Present results indicate that the use of the lift force and of the drag corrections does not lead to significant changes in the statistical properties of the solid phase, at the exception of some statistics for the high inertia particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号