首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper, we consider the Hamiltonian evolution of N weakly interacting bosons. Assuming triple collisions, its mean field approximation is given by a quintic Hartree equation. We construct a second order correction to the mean field approximation using a kernel k(t, x, y) and derive an evolution equation for k. We show global existence for the resulting evolution equation for the correction and establish an a priori estimate comparing the approximation to the exact Hamiltonian evolution. Our error estimate is global and uniform in time. Comparing with the work of Rodnianski and Schlein (Commun Math Phys 291:31–61, 2009), and Grillakis, Machedon and Margetis (Commun Math Phys 294:273–301, 2010; Adv Math 288:1788–1815, 2011), where the error estimate grows in time, our approximation tracks the exact dynamics for all time with an error of the order \({O(1/\sqrt{N}).}\)  相似文献   

2.
Let (M, g) be a complete Riemannian manifold, \({\Omega\subset M}\) an open subset whose closure is homeomorphic to an annulus. We prove that if ?Ω is smooth and it satisfies a strong concavity assumption, then there are at least two distinct geodesics in \({\overline\Omega=\Omega\cup\partial\Omega}\) starting orthogonally to one connected component of ?Ω and arriving orthogonally onto the other one. Using the results given in Giambò et al. (Adv Differ Equ 10:931–960, 2005), we then obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a class of Hamiltonian systems. Under a further symmetry assumption, the result is improved by showing the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinic orbits. In our proof we shall use recent deformation results proved in Giambò et al. (Nonlinear Anal Ser A: Theory Methods Appl 73:290–337, 2010).  相似文献   

3.
The Navier-Stokes system for a steady-state barotropic nonlinear compressible viscous flow, with an inflow boundary condition, is studied on a polygon D. A unique existence for the solution of the system is established. It is shown that the lowest order corner singularity of the nonlinear system is the same as that of the Laplacian in suitable L q spaces. Let ω be the interior angle of a vertex P of D. If \(\) and \(\), then the velocity u is split into singular and regular parts near the vertex P. If α < 2 and \(\) or if α > 2 and 2 < q < ∞&;, it is shown that u∈ (H 2, q (D))2.  相似文献   

4.
An analytical framework is developed for passing to the homogenisation limit in (not necessarily convex) variational problems for composites whose material properties oscillate with a small period ε and that exhibit high contrast of order \({\varepsilon^{-1}}\) between the constitutive, “stress-strain”, response on different parts of the period cell. The approach of this article is based on the concept of “two-scale Γ-convergence”, which is a kind of “hybrid” of the classical Γ-convergence (De Giorgi and Franzoni in Atti Accad Naz Lincei Rend Cl Sci Fis Mat Natur (8)58:842–850, 1975) and the more recent two-scale convergence (Nguetseng in SIAM J Math Anal 20:608–623, 1989). The present study focuses on a basic high-contrast model, where “soft” inclusions are embedded in a “stiff” matrix. It is shown that the standard Γ-convergence in the L p -space fails to yield the correct limit problem as \({\varepsilon \to 0,}\) due to the underlying lack of L p -compactness for minimising sequences. Using an appropriate two-scale compactness statement as an alternative starting point, the two-scale Γ-limit of the original family of functionals is determined via a combination of techniques from classical homogenisation, the theory of quasiconvex functions and multiscale analysis. The related result can be thought of as a “non-classical” two-scale extension of the well-known theorem by Müller (Arch Rational Mech Anal 99:189–212, 1987).  相似文献   

5.
In this paper, we confine our attention to Kirchhoff thin plates in presence of boundary viscoelastic dissipative mechanisms, in order to investigate the well-posedness and the asymptotic behavior within the minimal state approach, following the guidelines proposed in Deseri et al. (Arch Rational Mech Anal 181:43–96, 2006) [see also Fabrizio et al. (Arch Rational Mech Anal 198:189–232, 2010)].  相似文献   

6.
We consider the relativistic Vlasov–Maxwell system with data of unrestricted size and without compact support in momentum space. In the two-dimensional and the two-and-a-half-dimensional cases, Glassey–Schaeffer proved (Commun Math Phys 185:257–284, 1997; Arch Ration Mech Anal 141:331–354, 1998; Arch Ration Mech Anal. 141:355–374, 1998) that for regular initial data with compact momentum support this system has unique global in time classical solutions. In this work we do not assume compact momentum support for the initial data and instead require only that the data have polynomial decay in momentum space. In the two-dimensional and the two-and-a-half-dimensional cases, we prove the global existence, uniqueness and regularity for solutions arising from this class of initial data. To this end we use Strichartz estimates and prove that suitable moments of the solution remain bounded. Moreover, we obtain a slight improvement of the temporal growth of the \({L^\infty_x}\) norms of the electromagnetic fields compared to Glassey and Schaeffer (Commun Math Phys 185:257–284, 1997; Arch Ration Mech Anal 141:355–374, 1998). In the three-dimensional case, we apply Strichartz estimates and moment bounds to show that a regular solution can be extended as long as \({{\|p_0^{\theta} f \|_{L^{q}_{x}L^1_{p}}}}\) remains bounded for \({\theta > \frac{2}{q}}\), \({2 < q \leqq \infty}\). This improves previous results of Pallard (Indiana Univ Math J 54(5):1395–1409, 2005; Commun Math Sci 13(2):347–354, 2015).  相似文献   

7.
Gradient systems with wiggly energies of the form
$$
and A:? d →? wereproposed by Abeyaratne, Chu &; James [2] to study the kinetics of martensitic phase transitions. Their model may be recast in the framework of the theory of averaging as a dynamical system on ? d ×? d , with the slow variable x∈? d and fast variable θ∈? d . However, this problem lies completely outside the classical theory of averaging, since the vertical flow on ? d is not ergodic for sets of positive measure, and we must interpret averages to mean weak limits.
We obtain rigorous averaging results for d= 2. We use Schwartz's generalization of the Poincaré-Bendixson theorem [37] to heuristically derive homogenized equations for the weak limits. These equations depend on the ω-limit sets for the vertical flow on fibres. When the vertical flow is structurally stable, we use the persistence of hyperbolic structures to prove that these are the correct equations. We combine these theorems with a study of two-parameter bifurcations of flows on ?2 to characterize the weak limits. Our results may be interpreted as follows. The space ?2 breaks into: (˙1) a bounded open set surrounding {?F ?1 (0)} where there is only sticking, (˙2) a transition region outside this set, where the dynamics is a combination of sticking and slipping, and (˙3) the rest of the plane, which contains a countable number of resonance zones, with nonempty interior, and their nowhere dense complement. Inside a resonance zone the direction of the weak limits is given by the rotation number ρ∈?. The Cantor set structure of the resonance zones is described by well-known results of Arnol'd [7] and Herman [27] in the theory of circle diffeomorphisms. Consequently, the homogenized equations vary on all scales. We also study the linear transport equation associated with the wiggly gradient flow, and show that its homogenization limit is not well posed.Smyshlyaev has studied this problem independently, and some of our results are similar [39].  相似文献   

8.
Yongxin Yuan  Hao Liu 《Meccanica》2012,47(3):699-706
Finite element model updating is a procedure to minimize the differences between analytical and experimental results and can be mathematically reduced to solving the following problem. Problem P: Let M a SR n×n and K a SR n×n be the analytical mass and stiffness matrices and Λ=diag{λ 1,…,λ p }∈R p×p and X=[x 1,…,x p ]∈R n×p be the measured eigenvalue and eigenvector matrices, respectively. Find \((\hat{M}, \hat{K}) \in \mathcal{S}_{MK}\) such that \(\| \hat{M}-M_{a} \|^{2}+\| \hat{K}-K_{a}\|^{2}= \min_{(M,K) \in {\mathcal{S}}_{MK}} (\| M-M_{a} \|^{2}+\|K-K_{a}\|^{2})\), where \(\mathcal{S}_{MK}=\{(M,K)| X^{T}MX=I_{p}, MX \varLambda=K X \}\) and ∥?∥ is the Frobenius norm. This paper presents an iterative method to solve Problem P. By the method, the optimal approximation solution \((\hat{M}, \hat{K})\) of Problem P can be obtained within finite iteration steps in the absence of roundoff errors by choosing a special kind of initial matrix pair. A numerical example shows that the introduced iterative algorithm is quite efficient.  相似文献   

9.
We focus here on the analysis of the regularity or singularity of solutions Ω 0 to shape optimization problems among convex planar sets, namely:
$J(\Omega_{0})={\rm min} \{J(\Omega), \Omega \quad {\rm convex},\Omega \in \mathcal{S}_{\rm ad}\},$
where \({\mathcal{S}_{\rm ad}}\) is a set of 2-dimensional admissible shapes and \({J:\mathcal{S}_{\rm ad}\rightarrow\mathbb{R}}\) is a shape functional. Our main goal is to obtain qualitative properties of these optimal shapes by using first and second order optimality conditions, including the infinite dimensional Lagrange multiplier due to the convexity constraint. We prove two types of results:
  1. i)
    under a suitable convexity property of the functional J, we prove that Ω 0 is a W 2,p -set, \({p\in[1, \infty]}\). This result applies, for instance, with p = ∞ when the shape functional can be written as J(Ω) = R(Ω) + P(Ω), where R(Ω) = F(|Ω|, E f (Ω), λ1(Ω)) involves the area |Ω|, the Dirichlet energy E f (Ω) or the first eigenvalue of the Laplace–Dirichlet operator λ1(Ω), and P(Ω) is the perimeter of Ω;
     
  1. ii)
    under a suitable concavity assumption on the functional J, we prove that Ω 0 is a polygon. This result applies, for instance, when the functional is now written as J(Ω) = R(Ω) ? P(Ω), with the same notations as above.
     
  相似文献   

10.
Any classical solution of the two-dimensional incompressible Euler equation is global in time. However, it remains an outstanding open problem whether classical solutions of the surface quasi-geostrophic (SQG) equation preserve their regularity for all time. This paper studies solutions of a family of active scalar equations in which each component u j of the velocity field u is determined by the scalar θ through \({u_j =\mathcal{R}\Lambda^{-1}P(\Lambda) \theta}\) , where \({\mathcal{R}}\) is a Riesz transform and Λ = (?Δ)1/2. The two-dimensional Euler vorticity equation corresponds to the special case P(Λ) = I while the SQG equation corresponds to the case P(Λ) = Λ. We develop tools to bound \({\|\nabla u||_{L^\infty}}\) for a general class of operators P and establish the global regularity for the Loglog-Euler equation for which P(Λ) = (log(I + log(I ? Δ))) γ with 0 ≦ γ ≦ 1. In addition, a regularity criterion for the model corresponding to P(Λ) = Λ β with 0 ≦ β ≦ 1 is also obtained.  相似文献   

11.
The Wasserstein distances Wp (p \({\geqq}\) 1), defined in terms of a solution to the Monge–Kantorovich problem, are known to be a useful tool to investigate transport equations. In particular, the Benamou–Brenier formula characterizes the square of the Wasserstein distance W2 as the infimum of the kinetic energy, or action functional, of all vector fields transporting one measure to the other. Another important property of the Wasserstein distances is the Kantorovich–Rubinstein duality, stating the equality between the distance W1(μ, ν) of two probability measures μ, ν and the supremum of the integrals in d(μ ?ν) of Lipschitz continuous functions with Lipschitz constant bounded by one. An intrinsic limitation of Wasserstein distances is the fact that they are defined only between measures having the same mass. To overcome such a limitation, we recently introduced the generalized Wasserstein distances \({W_p^{a,b}}\), defined in terms of both the classical Wasserstein distance Wp and the total variation (or L1) distance, see (Piccoli and Rossi in Archive for Rational Mechanics and Analysis 211(1):335–358, 2014). Here p plays the same role as for the classic Wasserstein distance, while a and b are weights for the transport and the total variation term. In this paper we prove two important properties of the generalized Wasserstein distances: (1) a generalized Benamou–Brenier formula providing the equality between \({W_2^{a,b}}\) and the supremum of an action functional, which includes a transport term (kinetic energy) and a source term; (2) a duality à la Kantorovich–Rubinstein establishing the equality between \({W_1^{1,1}}\) and the flat metric.  相似文献   

12.
We prove a Gamma-convergence result for a family of bending energies defined on smooth surfaces in \({\mathbb{R}^3}\) equipped with a director field. The energies strongly penalize the deviation of the director from the surface unit normal and control the derivatives of the director. Such types of energies arise, for example, in a model for bilayer membranes introduced by Peletier and Röger (Arch Ration Mech Anal 193(3), 475–537, 2009). Here we prove in three space dimensions in the vanishing-tilt limit a Gamma-liminf estimate with respect to a specific curvature energy. In order to obtain appropriate compactness and lower semi-continuity properties we use tools from geometric measure theory, in particular the concept of generalized Gauss graphs and curvature varifolds.  相似文献   

13.
We derive the quantitative modulus of continuity $$\omega(r)=\left[ p+\ln \left( \frac{r_0}{r}\right)\right]^{-\alpha (n, p)},$$ which we conjecture to be optimal for solutions of the p-degenerate two-phase Stefan problem. Even in the classical case p = 2, this represents a twofold improvement with respect to the early 1980’s state-of-the-art results by Caffarelli– Evans (Arch Rational Mech Anal 81(3):199–220, 1983) and DiBenedetto (Ann Mat Pura Appl 103(4):131–176, 1982), in the sense that we discard one logarithm iteration and obtain an explicit value for the exponent α(n, p).  相似文献   

14.
We consider the existence of Beltrami fields with a nonconstant proportionality factor f in an open subset U of \({\mathbb{R}^3}\). By reformulating this problem as a constrained evolution equation on a surface, we find an explicit differential equation that f must satisfy whenever there is a nontrivial Beltrami field with this factor. This ensures that there are no nontrivial regular solutions for an open and dense set of factors f in the Ck topology, \({k\geqq 7}\). In particular, there are no nontrivial Beltrami fields whenever f has a regular level set diffeomorphic to the sphere. This provides an explanation of the helical flow paradox of Morgulis et al. (Commun Pure Appl Math 48:571–582, 1995).  相似文献   

15.
Motivated by some recent studies on the Allen–Cahn phase transition model with a periodic nonautonomous term, we prove the existence of complex dynamics for the second order equation
$$\begin{aligned} -\ddot{x} + \left( 1 + \varepsilon ^{-1} A(t)\right) G'(x) = 0, \end{aligned}$$
where A(t) is a nonnegative T-periodic function and \(\varepsilon > 0\) is sufficiently small. More precisely, we find a full symbolic dynamics made by solutions which oscillate between any two different strict local minima \(x_0\) and \(x_1\) of G(x). Such solutions stay close to \(x_0\) or \(x_1\) in some fixed intervals, according to any prescribed coin tossing sequence. For convenience in the exposition we consider (without loss of generality) the case \(x_0 =0\) and \(x_1 = 1\).
  相似文献   

16.
A matched-asymptotics approach is proposed to show the occurrence of two distinct characteristic length scales in the carbonation process. The separation of these scales arises due to the strong competition between reaction and diffusion effects. We show that for sufficiently large times τ the width of the carbonated region is proportional to \(\sqrt{\tau}\), while the width of the reaction front is proportional to \(\tau^{\frac{p-1}{2(p+1)}}\) for carbonation-reaction rates with a power law structure like k[CO2] p [Ca(OH)2] q , where k>0 and p,q>1 and identify the proportionality coefficient asymptotically. We emphasize the occurrence of a water barrier in the reaction zone which may hinder the penetration of CO2 by locally filling with water air parts of the pores. This non-linear effect may be one of the causes why a purely linear extrapolation of accelerated carbonation test results to natural carbonation settings is (even theoretically) not reasonable. Finally, we compare our asymptotic penetration law against measured penetration depths from Bune (Zum Karbonatisierungsbedingten Verlust der Dauerhaftigkeit von Außenbauteilen aus Stahlbeton, 1994). The novelty consists in the fact that the factor multiplying \(\sqrt{\tau}\) is now identified asymptotically by solving a non-linear system of ordinary differential equations, and hence, fitting arguments are not necessary to estimate its size. We offer an alternative to the (asymptotic) \(\sqrt{\tau}\) expression of the carbonation-front position obtained in Papadakis et al. (AIChE J. 35:1639, 1989).  相似文献   

17.
Wall-bounded turbulent flows over surfaces with spanwise heterogeneous surface roughness – that is, spanwise-adjacent patches of relatively high and low roughness – exhibit mean flow phenomena entirely different to what would otherwise exist in the absence of spanwise heterogeneity. In the outer layer, mean counter-rotating rolls occupy the depth of the flow, and are positioned such that “upwelling” and “downwelling” occurs above the low and high roughness, respectively. It has been comprehensively shown that these secondary flows are Prandtl’s secondary flow of the second kind (Anderson et al., J. Fluid Mech. 768, 316–347 2015). This behaviour indicates that spanwise spacing, s y , between adjacent patches of high and low roughness is, itself, a problem parameter; in this study, we have systematically assessed how s y affects turbulence structure in high Reynolds number channel flows via two-point correlations. “High roughness” is imposed with streamwise-aligned pyramid elements with height, h, selected to be ≈ 5% of the channel half height, H. For \(s_{y}/H \gtrsim 1\), we find that the aforementioned domain-scale mean circulations exist and the surface may be regarded as a topography. For s y /H ? 0.2, turbulence statistics show characteristics very similar to a homogeneous roughness and thus the surface may be regarded as a roughness. For 0.2 ? s y /H ? 2, the spatial extent of the counter-rotating rolls is controlled by proximity to adjacent rows, and we define such surfaces as being intermediate. We refer to such surfaces as intermediate state.  相似文献   

18.
Let \({f: U\rightarrow {\mathbb R}^2}\) be a continuous map, where U is an open subset of \({{\mathbb R}^2}\). We consider a fixed point p of f which is neither a sink nor a source and such that {p} is an isolated invariant set. Under these assumption we prove, using Conley index methods and Nielsen theory, that the sequence of fixed point indices of iterations \({\{{\rm ind}(f^n,p)\}_{n=1}^\infty}\) is periodic, bounded from above by 1, and has infinitely many non-positive terms, which is a generalization of Le Calvez and Yoccoz theorem (Annals of Math., 146, 241–293 (1997)) onto the class of non-injective maps. We apply our result to study the dynamics of continuous maps on 2-dimensional sphere.  相似文献   

19.
In this paper we extend and complement the results in Chiodaroli et al. (Global ill-posedness of the isentropic system of gas dynamics, 2014) on the well-posedness issue for weak solutions of the compressible isentropic Euler system in 2 space dimensions with pressure law p(ρ) = ρ γ , γ ≥ 1. First we show that every Riemann problem whose one-dimensional self-similar solution consists of two shocks admits also infinitely many two-dimensional admissible bounded weak solutions (not containing vacuum) generated by the method of De Lellis and Székelyhidi (Ann Math 170:1417–1436, 2009), (Arch Ration Mech Anal 195:225–260, 2010). Moreover we prove that for some of these Riemann problems and for 1 ≤ γ < 3 such solutions have a greater energy dissipation rate than the self-similar solution emanating from the same Riemann data. We therefore show that the maximal dissipation criterion proposed by Dafermos in (J Diff Equ 14:202–212, 1973) does not favour the classical self-similar solutions.  相似文献   

20.
In this paper, we consider a compressible two-fluid model with constant viscosity coefficients and unequal pressure functions \({P^+\neq P^-}\). As mentioned in the seminal work by Bresch, Desjardins, et al. (Arch Rational Mech Anal 196:599–629, 2010) for the compressible two-fluid model, where \({P^+=P^-}\) (common pressure) is used and capillarity effects are accounted for in terms of a third-order derivative of density, the case of constant viscosity coefficients cannot be handled in their settings. Besides, their analysis relies on a special choice for the density-dependent viscosity [refer also to another reference (Commun Math Phys 309:737–755, 2012) by Bresch, Huang and Li for a study of the same model in one dimension but without capillarity effects]. In this work, we obtain the global solution and its optimal decay rate (in time) with constant viscosity coefficients and some smallness assumptions. In particular, capillary pressure is taken into account in the sense that \({\Delta P=P^+ - P^-=f\neq 0}\) where the difference function \({f}\) is assumed to be a strictly decreasing function near the equilibrium relative to the fluid corresponding to \({P^-}\). This assumption plays an key role in the analysis and appears to have an essential stabilization effect on the model in question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号