首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The clinical impact of peptides that accumulate in tumours is determined by the number of particle emitting or paramagnetic isotopes attached. Therefore, attempts should be made to increase the cargo capacity of the peptide carriers. A general synthetic route to conjugates is described that allows insertion of multiple DOTA (1,4,7,10-tetraazacyclododecane-N′,N″,N?,N?-tetraacetic acid) moieties at the N-terminal end of the cyclic peptide Tyr3-octreotate. The peptide moiety was assembled by Fmoc solid phase synthesis and oxidised to form the cyclic disulfide. Subsequently, the required number of DOTA-tris tert-butyl ester chelating units were attached to the side chains of lysines. The conjugates were purified and thoroughly studied by RP-HPLC, size exclusion HPLC and mass spectrometry. The labelling of the novel conjugates and of DOTA0-Tyr3-octreotate (DOTATATE) was exemplified for 90Y and 111In. The methodology described here allows the versatile introduction of multiple DOTA chelates into a peptide sequence, thus, introducing a new scope to the receptor affine peptides that can be synthesised using solid phase synthesis.  相似文献   

2.
Four N-alkylaminooxy amino acids have been synthesized in 22-56% overall yield from readily available amino acid precursors. Each amino acid can be efficiently incorporated into peptides using Boc-chemistry-based solid-phase peptide synthesis, and in three of the four cases the resulting peptides can be chemoselectively glycosylated at the aminooxy side chains to generate neoglycopeptides. The range of N-alkylaminooxy amino acids prepared allows attachment of sugars at two-, three-, or four-atom distances from the peptide backbone, and each ensures that attached sugars adopt cyclic conformations. These derivatives provide convenient access to arrays of biologically relevant neoglycopeptides that may be used to probe the influence of attached sugars on the structure and function of peptides and proteins.  相似文献   

3.
Introduction of unnatural amino acids can significantly improve the binding affinity and stability of peptides. Commercial availability of such amino acids is limited, and their synthesis is a long and tedious process. We here describe a method that allows the functionalization of peptides directly on solid-support by converting lysine residues to Katritzky salts, and subjecting them to a photochemical Giese reaction under mild reaction conditions. The method avoids the need for amino acid synthesis and instead offers a late-stage modification route for rapid peptide diversification. While numerous modification approaches at the lysine amine have been described, this work provides the first example of deaminative functionalization of peptides at lysine. The two-step protocol is compatible with various substrates, lysine analogues, resins, and all proteinogenic amino acids. Finally, by leveraging solid-phase modification, this protocol facilitates the functionalization of longer peptides as was demonstrated using biologically relevant peptides of up to 15 amino acids.  相似文献   

4.
DOTA was conjugated to the N-terminus of a 12-mer peptide by using standard peptide synthesis chemistry. The peptide, first isolated by phage display, maintained a high affinity for its protein-binding target, Gal-80, even with GdDOTA attached. The high affinity constant (KA = 5 x 105 M-1) combined with the high relaxivity of the resulting GdDOTA-peptide.protein complex (r1bound = 44.8 +/- 1.7 mM-1 s-1) allowed detection of Gal-80 at muM levels using a standard magnetic resonance imaging protocol. This novel peptide-based, binding-activated MRI method could potentially be used to screen a wide variety of biomolecules.  相似文献   

5.
Previously, we developed a methodology for the solid‐phase screening of peptide libraries for interaction with double‐stranded deoxyribonucleic acids (dsDNA). In the search for new and more‐potent DNA ligands, we investigated the strategy of solution‐phase screening of chemical libraries consisting of unnatural oligopeptides. After synthesis of the selected amino acid building blocks, libraries were constructed with the general structure Ac‐Arg‐Ual‐Sar‐X1‐X2‐X3‐Arg‐NH2, where X represents each of twelve unnatural or natural amino acids. Optimization of the sequence of binding peptides was performed with an iterative deconvolution procedure. Selection of interacting peptides was carried out in solution by means of gel‐retardation experiments, starting with libraries of 144 compounds. A 14‐base‐pair double‐stranded DNA fragment was chosen as the target. After several cycles of synthesis and screening of libraries and individual peptides, an oligopeptide was selected with an apparent dissociation constant of 9⋅10−5 M , as determined by gel‐retardation experiments. This peptide was studied by NMR spectroscopy. A certain degree of conformational pre‐organization of the peptides was shown by temperature‐dependent circular‐dichroism experiments. Finally, DNase‐I‐footprinting studies indicated a preferential interaction with a 6‐base‐pair mixed sequence 5′‐CTGCAT‐3′. This study demonstrates that gel‐shift experiments can be used for the solution‐phase screening of library mixtures of peptides against dsDNA. In general, this technique allows the selection of new sequence‐selective dsDNA‐interacting molecules. Furthermore, novel dsDNA‐binding unnatural oligopeptides were developed with affinities in the 0.1 mM range.  相似文献   

6.
A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list.The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.  相似文献   

7.
The transfer of peptides identified through the phage display technology to clinical applications is difficult. Major drawbacks are the metabolic degradation and label instability. The aim of our work is the optimization of DUP-1, a peptide which was identified by phage display to specifically target human prostate carcinoma. To investigate the influence of chelate conjugation, DOTA was coupled to DUP-1 and labeling was performed with 111In. To improve serum stability cyclization of DUP-1 and targeted D-amino acid substitution were carried out. Alanine scanning was performed for identification of the binding site and based on the results peptide fragments were chemically synthesized. The properties of modified ligands were investigated in in vitro binding and competition assays. In vivo biodistribution studies were carried out in mice, carrying human prostate tumors subcutaneously. DOTA conjugation resulted in different cellular binding kinetics, rapid in vivo renal clearance and increased tumor-to-organ ratios. Cyclization and D-amino acid substitution increased the metabolic stability but led to binding affinity decrease. Fragment investigation indicated that the sequence NRAQDY might be significant for target-binding. Our results demonstrate challenges in optimizing peptides, identified through phage display libraries, and show that careful investigation of modified derivatives is necessary in order to improve their characteristics.  相似文献   

8.
Ile-Ala-Val-Pro as a hypocholesterolemic peptide was isolated from soybean protein. We have synthesized four peptides, Ile-Ala-Val-Pro-Gly-Glu-Val-Ala, Leu-Ile-Ala-Val-Pro-Gly-Glu-Val-Ala, Ile-Ala-Val-Pro-Thr-Gly-Val-Ala, Leu-Ile-Ala-Val-Pro-Thr-Gly-Val-Ala, with a conserved Ile-Ala-Val-Pro amino acid sequence, for circular dichroism investigations. These four peptide sequences were also found in the amino acid sequence in soybean protein, which was defined from the genomic sequence. Additionally for a detailed analysis of conformation features of these peptides, the Ile-Ala-Val-Pro and Leu-Ile-Ala-Val-Pro were also synthesized. All peptides were prepared using standard fluorenylmethyloxycarbonyl methodology and the peptide yields ranged from 90 to 95% of the theoretical yields with purity after purification above 99%.  相似文献   

9.
An understanding of the gas-phase dissociation of protonated peptides within the mass spectrometer is essential for automated high-throughput protein identification. In this communication we describe a facile cleavage of the Gln-Gly peptide bond under low-collisional energy conditions. A variety of synthetic peptides have been analysed where key amino acids have been substituted within the sequence PQGPPQQGGR, which is a consensus repeat present in the tryptic peptides of acidic proline-rich protein 1 (PRP-1). The collision-induced dissociation spectra obtained from the PRP-1 tryptic peptides and the synthetic peptides indicate that facile Gln-Gly cleavage occurs when an X-Gln-Gly-Y sequence is present in a peptide, where X is any amino acid and Y any amino acid other than Gly.  相似文献   

10.
Presumable dermorphin precursor peptide derivatives comprised of 35 amino acids and their fragments, which are based on the amino acid sequence determined by recombinant deoxyribonucleic acid (DNA) techniques, were synthesized by the solid phase method. A 35-residue peptide amide containing L-Ala2-dermorphin sequence at the N-terminus (1) as well as its D-Ala2 isomer (2) and the C-terminal 20-residue peptide amide were found to be unexpectedly stable against aminopeptidase M digestion and in rat brain membrane fractions mixture, suggesting that the C-terminal Glu-rich moiety of 1 and 2 serves to protect from enzymatic breakdown. In the opioid receptor binding assay, 2 showed 40 and 25-fold higher affinities than 1 for mu and delta-receptors, respectively. The N-terminal 15-residue peptide fragment of 2 showed greatly increased affinities for both receptors, being one half of those of dermorphin, whereas that of 1 showed low affinities. Opioid receptor binding properties of these synthetic peptides may be useful in investigation of the processing to dermorphin.  相似文献   

11.
Three 1-(2-nitrophenyl)ethyl-caged phospho-amino acids have been synthesized for use in standard N(alpha)-fluorenylmethoxycarbonyl-based solid-phase peptide synthesis (SPPS). The most common naturally occurring phospho-amino acids, serine, threonine, and tyrosine, were prepared as protected caged building blocks by modification with a unique phosphitylating reagent. In previous work, caged phospho-peptides were made using an interassembly approach (Rothman, D. M.; Vazquez, M. E.; Vogel, E. M.; Imperiali, B. Org. Lett. 2002, 4, 2865-2868). However, this technique is limited to creating peptides without oxidation sensitive residues C-terminal to the amino acid to be modified and the methodology involves synthetic manipulations on the solid phase that may limit the utilization of the methodology. Herein we report the facile synthesis of N-alpha-Fmoc-phospho(1-nitrophenylethyl-2-cyanoethyl)-L-serine 1, N-alpha-Fmoc-phospho(1-nitrophenylethyl-2-cyanoethyl)-L-threonine 2, and N-alpha-Fmoc-phospho(1-nitrophenylethyl-2-cyanoethyl)-L-tyrosine 3. These building blocks allow the synthesis of any caged phospho-peptide sequence using standard Fmoc-based SPPS procedures.  相似文献   

12.
Amphiphilic derivative of the laminin peptide YIGSR and three other mutated peptides with mutation at Y with V (valine), I (isoleucine), and L (leucine) have been synthesized. The monolayer formation and the stability of these peptide analogues at air/water interface and the interaction with phospholipid monolayers have been studied using surface pressure-molecular area (pi-A) and surface potential-molecular area (DeltaV-A) isotherms. The single amino acid mutation in the native sequence leads to appreciable changes in surface activity, orientation and insertion into lipid monolayers with LIGSR showing most hydrophobic character while YIGSR showed most polar nature. The morphology of spread monolayers in the most close packed state was carried out using Brewster angle microscopy (BAM). LB films of these amphiphilic peptide derivatives transferred to hydrophilic quartz surfaces and hydrophobically modified surfaces showed significant changes in the work of adhesion as well as spreading behavior of water with the L substituted sequence showing maximum work of adhesion and the native sequence YIGSR, the least work of adhesion. From theoretical estimates, the long-range effects of the different amino acid residues in position 1 on the alkyl chains have been studied from charge on the carbon and hydrogen atoms of the alkyl tails. The present study demonstrates that amphiphilic derivatives of the laminin peptide YIGSR show enhanced activity compared to the original sequence. This work shows that the amino acid substituents on the head group clearly influence the distal methylene groups of the tail. Thus, any mutation of even single amino acid in a peptide sequence influences and plays an important role in determining macroscopic properties such as surface energy and adhesion both at air/solution and solid/solution interfaces.  相似文献   

13.
Here we report the in vitro selection of novel small peptide motifs that bind to human alpha-thrombin. We have applied mRNA display to select for thrombin binding peptides from an unbiased library of 1.2 x 10(11) different 35-mer peptides, each containing a random sequence of 15 amino acids. Two clones showed binding affinities ranging from 166 to 520 nM. A conserved motif of four amino acids, DPGR, was identified. Clot formation of human plasma is inhibited by the selected clones, and they downregulate the thrombin-mediated activation of protein C. The identified peptide motifs do not share primary sequence similarities to any of the known natural thrombin binding motifs. As new inhibitors for human thrombin open interesting possibilities in thrombosis research, our newly identified peptides may provide further insights into this field of investigation and may be possible candidates for the development of new anti-thrombotic agents.  相似文献   

14.
Peptide mimetics are of considerable interest as bioactive agents and drugs. C-terminally modified peptide mimetics are of particular interest given the synthetic versatility of the carboxyl group and its derivatives. A general approach to C-terminally modified peptide mimetics, based on a urethane attachment strategy and amino acid t-butyl ester-based N-to-C peptide synthesis, is described. This approach is compatible with the reaction conditions generally employed for solution-phase peptide mimetic synthesis. To develop and demonstrate this approach, it was employed for the solid-phase synthesis of peptide trifluoromethyl ketones, peptide boronic acids, and peptide hydroxamic acids. The development of a versatile general approach to C-terminally modified peptides using readily available starting materials provides a basis for the combinatorial and parallel solid-phase synthesis of these peptide mimetic classes for bioactive agent screening and also provides a basis for the further development of solid-phase C-terminal functional group elaboration strategies.  相似文献   

15.
The T-cell receptor of a CD8(+) T-cell recognises peptide epitopes bound by class I major histocompatibility complex (MHC) glycoproteins presented in a groove on their upper surface. Within the groove of the MHC molecule are 6 pockets, two of which mostly display a high degree of specificity for binding amino acids capable of making conserved and energetically favourable contacts with the MHC. One type of MHC molecule, HLA-B*2705, preferentially binds peptides containing an arginine at position 2. In an effort to increase the affinity of peptides for HLA-B*2705, potentially leading to better immune responses to such a peptide, we synthesised two modified epitopes where the amino acid at position 2 involved in anchoring the peptide to the class I molecule was replaced with the alpha-methylated beta,gamma-unsaturated arginine analogue 2-(S)-amino-5-guanidino-2-methyl-pent-3-enoic acid. The latter was prepared via a multi-step synthetic sequence, starting from alpha-methyl serine, and incorporated into dipeptides which were fragment-coupled to resin-bound heptameric peptides yielding the target nonameric sequences. Biological characterisation indicated that the modified peptides were poorer than the native peptides at stabilising empty class I MHC complexes, and cells sensitised with these peptides were not recognised as well by cognate CD8(+) T-cells, where available, compared to those sensitised with the native peptide. We suggest that the modifications made to the peptide have decreased its ability to bind to the peptide binding groove of HLA-B*2705 molecules which may explain the decrease in recognition by cytotoxic T-cells when compared to the native peptide.  相似文献   

16.
The mass spectra of novel estra derivatives of amino acids and peptides were studied using electron impact and fast atom bombardment ionization, high-resolution data and mass-analysed ion kinetic energy spectrometry. The characteristic peaks of the basic nucleus of estrogenic steroids, the amino acid sequence of the peptide chain and partial skeletal rearrangement of some of these compounds were observed.  相似文献   

17.
Total synthesis of proteins can be challenging despite assembling techniques, such as native chemical ligation (NCL) and expressed protein ligation (EPL). Especially, the combination of recombinant protein expression and chemically addressable solid-phase peptide synthesis (SPPS) is well suited for the redesign of native protein structures. Incorporation of analytical probes and artificial amino acids into full-length natural protein domains, such as the sequence-specific DNA binding zinc-finger motifs, are of interest combining selective DNA recognition and artificial function. The semi-synthesis of the natural 90 amino acid long sequence of the zinc-finger domain of Zif268 is described including various chemically modified constructs. Our approach offers the possibility to exchange any amino acid within the third zinc finger. The realized modifications of the natural sequence include point mutations, attachment of a fluorophore, and the exchange of amino acids at different positions in the zinc finger by artificial amino acids to create additional metal binding sites. The individual constructs were analyzed by circular dichroism (CD) spectroscopy with respect to the integrity of the zinc-finger fold and DNA binding.  相似文献   

18.
It has tremendous values for both drug discovery and basic research to develop a solid bioinformatical tool for guiding peptide reagent design. Based on the physical and chemical properties of amino acids, a new strategy for peptide reagent design, the so-called AABPD (amino acid based-peptide design), is proposed. The peptide samples in a training dataset are described by a series of HMLP (heuristic molecular lipophilicity potential) parameters and other physicochemical properties of amino acid residues that form a three-dimensional data matrix where each component is defined by three indexes: the first index refers to the peptide samples, the second to the amino acid positions, and the third to the amino acid parameters. The binding free energy between a peptide ligand and its protein receptor is calculated by a linear free energy equation through the physicochemical parameters, resulting in a set of simultaneous linear equations between the bioactivity of the peptides and the physicochemical properties of amino acids. An iterative double least square technique is developed for the solution of the three-dimensional simultaneous linear equation set to determine the amino acid position coefficients of peptide sequence and the physicochemical parameter coefficients of amino acid residues alternately. The two sets of coefficients thus obtained are used for predicting the bioactivity of other query peptide reagents. Two calculation examples, the peptide substrate specificity of the SARS coronavirus 3C-like proteinase and the affinity prediction for epitope-peptides with Class I MHC molecules are studied by using the peptide reagent design strategy.  相似文献   

19.
An efficient new strategy for the synthesis of peptide and glycopeptide thioesters is described. The method relies on the side-chain immobilization of a variety of Fmoc-amino acids, protected at their C-termini, on solid supports. Once anchored, peptides were constructed using solid-phase peptide synthesis according to the Fmoc protocol. After unmasking the C-terminal carboxylate, either thiols or amino acid thioesters were coupled to afford, after cleavage, peptide and glycopeptide thioesters in high yields. Using this method a significant proportion of the proteinogenic amino acids could be incorporated as C-terminal amino acid residues, therefore providing access to a large number of potential targets that can serve as acyl donors in subsequent ligation reactions. The utility of this methodology was exemplified in the synthesis of a 28 amino acid glycopeptide thioester, which was further elaborated to an N-terminal fragment of the glycoprotein erythropoietin (EPO) by native chemical ligation.  相似文献   

20.
The isolation and identification is described of MHC class II-bound peptides derived from Langerhans cells. A combination of preparative micro-HPLC, MALDI-MS, Edman degradation was used for determining the amino acid sequence of MHC-associated peptides. Sample handling was crucial because fractions containing trace amounts of material require immediate storage at -80 degrees C to prevent peptide losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号