首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a stochastic mean square version of Lax’s equivalence theorem for Hilbert space valued stochastic differential equations with additive and multiplicative noise is proved. Definitions for consistency, stability, and convergence in mean square of an approximation of a stochastic differential equation are given and it is shown that these notions imply similar results as those known for approximations of deterministic partial differential equations. Examples show that the assumptions made are met by standard approximations.  相似文献   

2.
Recently, numerical solutions of stochastic differential equations have received a great deal of attention. Numerical approximation schemes are invaluable tools for exploring their properties. In this paper, we introduce a class of stochastic age-dependent (vintage) capital system with Poisson jumps. We also give the discrete approximate solution with an implicit Euler scheme in time discretization. Using Gronwall’s lemma and Barkholder-Davis-Gundy’s inequality, some criteria are obtained for the exponential stability of numerical solutions to the stochastic age-dependent capital system with Poisson jumps. It is proved that the numerical approximation solutions converge to the analytic solutions of the equations under the given conditions, where information on the order of approximation is provided. These error bounds imply strong convergence as the timestep tends to zero. A numerical example is used to illustrate the theoretical results.  相似文献   

3.
We construct the Laplace approximation of the Lebesgue density for a discrete partial observation of a multi-dimensional stochastic differential equation. This approximation may be computed integrating systems of ordinary differential equations. The construction of the Laplace approximation begins with the definition of the point of minimum energy. We show how such a point can be defined in the Cameron–Martin space as a maximum a posteriori estimate of the underlying Brownian motion given the observation of a finite-dimensional functional. The definition of the MAP estimator is possible via a renormalization of the densities of piecewise linear approximations of the Brownian motion. Using the renormalized Brownian density the Laplace approximation of the integral over all Brownian paths can be defined. The developed theory provides a method for performing approximate maximum likelihood estimation.  相似文献   

4.
In this paper, we are concerned with the numerical approximation of stochastic differential equations with discontinuous/nondifferentiable drifts. We show that under one-sided Lipschitz and general growth conditions on the drift and global Lipschitz condition on the diffusion, a variant of the implicit Euler method known as the split-step backward Euler (SSBE) method converges with strong order of one half to the true solution. Our analysis relies on the framework developed in [D. J. Higham, X. Mao and A. M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM Journal on Numerical Analysis, 40 (2002) 1041-1063] and exploits the relationship which exists between explicit and implicit Euler methods to establish the convergence rate results.  相似文献   

5.
The subject of this paper is the analytic approximation method for solving stochastic differential equations with time-dependent delay. Approximate equations are defined on equidistant partitions of the time interval, and their coefficients are Taylor approximations of the coefficients of the initial equation. It will be shown, without making any restrictive assumption for the delay function, that the approximate solutions converge in Lp-norm and with probability 1 to the solution of the initial equation. Also, the rate of the Lp convergence increases when the degrees in the Taylor approximations increase, analogously to what is found in real analysis. At the end, a procedure will be presented which allows the application of this method, with the assumption of continuity of the delay function.  相似文献   

6.
In this paper, we will present a new adaptive time stepping algorithm for strong approximation of stochastic ordinary differential equations. We will employ two different error estimation criteria for drift and diffusion terms of the equation, both of them based on forward and backward moves along the same time step. We will use step size selection mechanisms suitable for each of the two main regimes in the solution behavior, which correspond to domination of the drift-based local error estimator or diffusion-based one. Numerical experiments will show the effectiveness of this approach in the pathwise approximation of several standard test problems.  相似文献   

7.
In this paper we discuss split-step forward methods for solving Itô stochastic differential equations (SDEs). Eight fully explicit methods, the drifting split-step Euler (DRSSE) method, the diffused split-step Euler (DISSE) method and the three-stage Milstein (TSM 1a-TSM 1f) methods, are constructed based on Euler-Maruyama method and Milstein method, respectively, in this paper. Their order of strong convergence is proved. The analysis of stability shows that the mean-square stability properties of the methods derived in this paper are improved on the original methods. The numerical results show the effectiveness of these methods in the pathwise approximation of Itô SDEs.  相似文献   

8.
A large deviation principle is derived for a class of stochastic reaction-diffusion partial differential equations with slow-fast components. The result shows that the rate function is exactly that of the averaged equation plus the fluctuating deviation which is a stochastic partial differential equation with small Gaussian perturbation. This result also confirms the effectiveness of the approximation of the averaged equation plus the fluctuating deviation to the slow-fast stochastic partial differential equations.  相似文献   

9.
In this paper we consider Runge-Kutta methods for jump-diffusion differential equations. We present a study of their mean-square convergence properties for problems with multiplicative noise. We are concerned with two classes of Runge-Kutta methods. First, we analyse schemes where the drift is approximated by a Runge-Kutta ansatz and the diffusion and jump part by a Maruyama term and second we discuss improved methods where mixed stochastic integrals are incorporated in the approximation of the next time step as well as the stage values of the Runge-Kutta ansatz for the drift. The second class of methods are specifically developed to improve the accuracy behaviour of problems with small noise. We present results showing when the implicit stochastic equations defining the stage values of the Runge-Kutta methods are uniquely solvable. Finally, simulation results illustrate the theoretical findings.  相似文献   

10.
11.
This paper is a survey of strong discrete time approximations of jump-diffusion processes described by stochastic differential equations (SDEs). It also presents new results on strong discrete time approximations for the specific case of pure jump SDEs.  相似文献   

12.
In this paper we study the homeomorphic properties of the solutions to one dimensional backward stochastic differential equations under suitable assumptions, where the terminal values depend on a real parameter. Then, we apply them to the solutions for a class of second order quasilinear parabolic partial differential equations.  相似文献   

13.
In this paper, we study a kind of system of second order quasilinear parabolic partial differential equation combined with algebra equations. Introducing a family of coupled forward–backward stochastic differential equations, and by virtue of some delicate analysis techniques, we give a probabilistic interpretation for it in the viscosity sense.  相似文献   

14.
In this paper we discuss three-stage stochastic Runge–Kutta (SRK) methods with strong order 1.0 for a strong solution of Stratonovich stochastic differential equations (SDEs). Higher deterministic order is considered. Two methods, a three-stage explicit (E3) method and a three-stage semi-implicit (SI3) method, are constructed in this paper. The stability properties and numerical results show the effectiveness of these methods in the pathwise approximation of several standard test problems.  相似文献   

15.
To the best of the authors’ knowledge, there are no results based on the so-called Razumikhin technique via a general decay stability, for any type of stochastic differential equations. In the present paper, the Razumikhin approach is applied to the study of both pth moment and almost sure stability on a general decay for stochastic functional differential equations with infinite delay. The obtained results are extended to stochastic differential equations with infinite delay and distributed infinite delay. Some comments on how the considered approach could be extended to stochastic functional differential equations with finite delay are also given. An example is presented to illustrate the usefulness of the theory.  相似文献   

16.
Degenerate parabolic equations of Kolmogorov type occur in many areas of analysis and applied mathematics. In their simplest form these equations were introduced by Kolmogorov in 1934 to describe the probability density of the positions and velocities of particles but the equations are also used as prototypes for evolution equations arising in the kinetic theory of gases. More recently equations of Kolmogorov type have also turned out to be relevant in option pricing in the setting of certain models for stochastic volatility and in the pricing of Asian options. The purpose of this paper is to numerically solve the Cauchy problem, for a general class of second order degenerate parabolic differential operators of Kolmogorov type with variable coefficients, using a posteriori error estimates and an algorithm for adaptive weak approximation of stochastic differential equations. Furthermore, we show how to apply these results in the context of mathematical finance and option pricing. The approach outlined in this paper circumvents many of the problems confronted by any deterministic approach based on, for example, a finite-difference discretization of the partial differential equation in itself. These problems are caused by the fact that the natural setting for degenerate parabolic differential operators of Kolmogorov type is that of a Lie group much more involved than the standard Euclidean Lie group of translations, the latter being relevant in the case of uniformly elliptic parabolic operators.  相似文献   

17.
We investigate the existence of invariant measures for self-stabilizing diffusions. These stochastic processes represent roughly the behavior of some Brownian particle moving in a double-well landscape and attracted by its own law. This specific self-interaction leads to nonlinear stochastic differential equations and permits pointing out singular phenomena like non-uniqueness of associated stationary measures. The existence of several invariant measures is essentially based on the non-convex environment and requires generalized Laplace’s method approximations.  相似文献   

18.
It is well known that the numerical solution of stiff stochastic ordinary differential equations leads to a step size reduction when explicit methods are used. This has led to a plethora of implicit or semi-implicit methods with a wide variety of stability properties. However, for stiff stochastic problems in which the eigenvalues of a drift term lie near the negative real axis, such as those arising from stochastic partial differential equations, explicit methods with extended stability regions can be very effective. In the present paper our aim is to derive explicit Runge–Kutta schemes for non-commutative Stratonovich stochastic differential equations, which are of weak order two and which have large stability regions. This will be achieved by the use of a technique in Chebyshev methods for ordinary differential equations.  相似文献   

19.
Abstract. An approximation to the solution of a stochastic parabolic equation is constructed using the Galerkin approximation followed by the Wiener chaos decomposition. The result is applied to the nonlinear filtering problem for the time-homogeneous diffusion model with correlated noise. An algorithm is proposed for computing recursive approximations of the unnormalized filtering density and filter, and the errors of the approximations are estimated. Unlike most existing algorithms for nonlinear filtering, the real-time part of the algorithm does not require solving partial differential equations or evaluating integrals. The algorithm can be used for both continuous and discrete time observations. \par  相似文献   

20.
Stochastic calculus and stochastic differential equations for Brownian motion were introduced by K. Itô in order to give a pathwise construction of diffusion processes. This calculus has deep connections with objects such as the Fock space and the Heisenberg canonical commutation relations, which have a central role in quantum physics. We review these connections, and give a brief introduction to the noncommutative extension of Itô’s stochastic integration due to Hudson and Parthasarathy. Then we apply this scheme to show how finite Markov chains can be constructed by solving stochastic differential equations, similar to diffusion equations, on the Fock space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号