首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This communication presents the optical studies associated with transition doped (metallic)-neutral (semiconductor or insulator) state for conducting polymers. Special attention is focused on the electronic properties of polyaniline. The interconversion of different oxidation states of polyanilines has been studied by chemical and radiolytic methods. The polyaniline system is described by three sets of chromophores of three different oxidation states: fully reduced leucoemeraldine base (LB), partially oxidized emeraldine base (EB), and fully oxidized pernigraniline (PB). Each oxidation state can exist in its protonated form by treatment with an acid. All members of polyaniline family are spectroscopically distinguishable. The radiolytic study presents evidence that the polyaniline can exist in a continuum of oxidation states. The highly conducting form of polymer, i.e. emeraldine salt can be converted by using ionizing radiation into leucoemeraldine salt. The leucoemeraldine base is the final product of radiolysis of emeraldine base solution. The fully oxidized form of polyaniline can also be obtained by the irradiation of EB in the presence of CCl4 or chlorobenzene.  相似文献   

2.
Results of the simultaneous in-situ UV-vis and open-circuit potential (OCP) monitoring of the low-concentrated aniline (An) polymerization in the presence of camphorsulfonic acid (CSA) suggested that during the induction period (IP) step a transition state formed, which probably included anilinium cation and the oxidant anion, antecedent to a propagation step. No aniline oligomers were registered at this stage but they appeared at the beginning of the propagation step under the investigation conditions. The moments of formation of insoluble pernigraniline phase and appearance of emeraldine units in the growing pernigraniline chains were ascertained by the comparison of kinetic and OCP profiles of the polymerization process both in the solution and in SiC dispersion water mediums. It is deduced that pernigraniline reduction by aniline molecules begins earlier than it is generally accepted (i.e., earlier than OCP maximum is reached) and probably in parallel to a continuing appearance of pernigraniline units even in the same chains that undergo the reduction. It was found that an addition of the SiC dispersion phase into the polymerization mixture accelerates differently all stages of the aniline polymerization. Finally, this polymerization process leads to the formation of polyaniline (PANI)-CSA shell with thickness in the range from 0.5 nm to a few nm at the SiC nanocrystals surface.  相似文献   

3.
A novel electroactive alternating copolymer, with fixed conjugated length of oligoaniline (phenyl-capped aniline tetramer) in the main chain, was successfully synthesized via oxidative coupling polymerization. The structure of the copolymer was systematically studied by Fourier-transform infrared (FTIR) spectra, NMR, elemental analysis (EA), UV-vis spectra and X-ray powder diffraction (XRD). And its electrochemical behavior was studied by cyclic voltammetry (CV) measurement. It was found that the obtained copolymer bearing phenyl-capped aniline tetramer segments had a reversible electrochemical property in the cyclic voltammetry, and the copolymer was oxidized to its emeraldine oxidation state and then to the pernigraniline oxidation state, which was same as that of polyaniline. Moreover, the thermal properties of the copolymer were evaluated by thermogravimetric analysis (TGA). The electrical conductivity of the obtained copolymer was about 1.43 × 10−7 S cm−1 at room temperature.  相似文献   

4.
费洋  金磊  宋宏伟  黄惠  郭忠诚 《化学通报》2016,79(5):443-447
对丙酮/水体系中合成聚苯胺(PAn)的反应进行跟踪,通过聚合过程的开路电压、聚合温度、特性粘度和中间体的分子结构对聚合过程进行研究。结果表明,丙酮/水体系对控制产物的粒度和分子量都有利;当丙酮/水的体积比为0.2左右时,所得产物的各项性能较好。与水体系相比,在丙酮/水混合体系中聚合过程维持高电位的时间延长,聚合链增长时间和自加速反应时间也有延长。苯胺聚合是以头-尾连接形式进行,且中间产物由高氧化态逐渐转变成中间氧化态。  相似文献   

5.
A 3D array of organic semiconductors was assembled using a DNA scaffold. An octameric aniline molecule (“octaniline”) was incorporated into a DNA building block based on a dimeric tensegrity triangle. The construct self-assembled to form a 3D crystal. Reversible redox conversion between the pernigraniline and leucoemeraldine states of the octaniline is retained in the crystal. Protonic doping gave emeraldine salt at pH 5, corresponding to the conductive form of polyaniline. Redox cycling within the crystal was visualized by color changes and Raman microscopy. The ease of conversion between the octaniline states suggests that it is a viable electronic switch within a unique 3D structure.  相似文献   

6.
Syntheses of parent polyaniline and methyl, methoxy, and ethoxy ortho-substituted polyanilines were performed using the conventional chemical methodology and monitored using the new open-circuit-potential (Voc) profile technique. The intermediate pernigraniline oxidation state was identified and isolated at the Voc maximum (A) during the conventional chemical synthesis of poly(o-methoxyaniline) in the emeraldine oxidation state. The introduction of the substituent on the aniline ring leads to longer polymerization times and lower Voc values. Syntheses in the presence of two different monomers in solution were also investigated and showed preferential polymerization of the monomer with the lowest Voc potential. All polymers produced were characterized by elemental analysis, gel permeation chromatography, UV-VIS spectroscopy, and cyclic voltammetry. The influence of the substituent on the Voc profile and on the polymer characteristics are rationalized in terms of steric and electronic effects. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
The electrochemical polymerization of aniline in a hydrophobic room-temperature ionic liquid and the spectroelectrochemical characterization of the formed film are presented. The polymerization occurs without the presence of acid in 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (BMMITFSI), leading to a very stable electroactive material where no degradation was observed even at high applied potentials. Both in situ UV-Vis and Raman spectroscopic studies provided evidence for the stabilization of pernigraniline salt at high oxidation potentials and that this polyaniline state is the conducting form, as was corroborated by in situ resistance measurements. These data are indicative that low conductivity is not an intrinsic property of pernigraniline salt and this point must be reconsidered.  相似文献   

8.
Dispersion of carbon nanotubes into solvents affects their surface chemistries, electronic structures, and subsequent functionalization. In this Communication, a water-soluble self-doped polyaniline nanocomposite was fabricated by in situ polymerization of the 3-aminophenylboronic acid monomers in the presence of single-stranded DNA dispersed- and functionalized-single-walled carbon nanotubes. For the first time, we found that the carbon nanotubes became novel active stabilizers owing to the DNA functionalization. The nanotubes reduced the polyaniline backbone from the unstable, degradable, fully oxidized pernigraniline state to the stable, conducting emeraldine state because of their reductive ability, which could improve the chemical stability of the self-doped polyaniline. Electrical measurements demonstrate that the conductivity of the nanocomposite was much higher than that of the pure self-doped polyaniline in both acidic and neutral solutions.  相似文献   

9.
A new nanocomposite of vanadium pentoxide (V2O5) and polyaniline (PANI) were synthesized by in situ oxidative polymerization/intercalation on V2O5 powder at room temperature. The reaction was facile and topotactic, forming polyaniline as the emeraldine salt. It was indicated that V2O5 itself can catalyze the oxidative polymerization of aniline and that layered structure could make aniline intercalate into the V2O5 framework. It makes the in situ polymerization feasible to occur in the layer of V2O5 structure. XRD results showed PANI/V2O5 nanocomposite possessed lamellar mesostructure, which was determined by an X-ray diffraction peak at 6.5° and SEM photograph. And FT-IR spectrum suggested that there was interaction between PANI and V2O5. The hybrid had better thermal stability in N2 and air ambience.  相似文献   

10.
The standard emeraldine base (EB) form of polyaniline and the product obtained by the oxidative polymerization of aniline using a pH-stat method at a constant pH of 2.5 are investigated. The morphology of the pH-stat product was examined using scanning electron microscopy and transmission electron microscopy. The prevalence of self-assembled nanotubes in the pH-stat product is confirmed. The structural differences between the EB and pH-stat products are revealed by FTIR and solid-state NMR experiments. On the basis of these investigations, the presence and the role of the oligomeric material in the formation of nanotubes is confirmed.  相似文献   

11.
In this work, aniline was polymerized directly to the polyaniline‐sulfate salt without using a protonic acid. The polyaniline‐sulfate salt was prepared by emulsion polymerization, using a non ionic surfactant such as poly(ethylene glycol)–block poly(propylene glycol)‐block poly(ethylene glycol). In the aniline oxidation process, to give the polyaniline salt by ammonium persulfate, the sulfate ion is generated from ammonium persulfate and doped on to the polyaniline. Ammonium persulfate acts both as an oxidizing agent, as well as the protonating agent in the aniline polymerization process, to give the polyaniline salt. This result indicates that the effect of sulfate ion, generated by ammonium persulfate during oxidation of aniline to the polyaniline salt, may be taken into consideration in the polymerization process of aniline.  相似文献   

12.
To obtain polyanilines which are more structurally perfect than those obtainable by the oxidation of anilines, polycondensation procedures were investigated. Model reactions gave extensive information about yields and about the physical properties of the putative structural polymer units. Condensation of anthraquinones with aromatic diamines using titanium tetrachloride and the unique base, 1,4‐diazabicyclo‐[2.2.2]‐octane Dabco, gave high molecular weight orange polyquinonimines. Alkoxy groups on the anthraquinone ring aided solubility and molecular weight, and appropriately positioned alkoxy groups afforded stereoregular polymers. A bisthiophene benzoquinone also polymerized successfully. Application of the same procedure to 2,5‐dimethyl‐p‐benzoquinone gave stereoregular poly(arylene benzoquinonimines), close analogs of pernigrani line. The factors causing problems in achieving high yields and high molecular weight were identified. Recent synthetic developments in this field are discussed. Reduction of the obtained polyquinonimines proceeded smoothly to the leucoemeraldine analogs. Unlike the results from pernigraniline obtained by oxidative polymerization, no evidence for the formation of the electrically conductive emeraldine form was obtained. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4751–4763, 2007  相似文献   

13.
Aniline was polymerized directly into polyaniline‐sulfate salt without using protonic acid in this work. Polyaniline‐sulfate salt was prepared by emulsion and aqueous polymerization pathways. The dopant i.e. sulfate ion in polyaniline‐sulfate salt was generated from ammonium persulfate which was used for oxidizing aniline. Ammonium persulfate acts both as oxidizing agent as well as protonating agent in the polymerization process of aniline to polyaniline salt. The efficiency of oxidizing and protonating power of ammonium persulfate is increased by the use of surfactant. The activity of ammonium persulfate is further increased by the use of sulfuric acid as protonic acid. It may be necessary to consider the effect of sulfate ion which is generated during the oxidation process of aniline in the chemical polymerization of aniline to polyaniline salt by ammonium persulfate either aqueous or emulsion polymerization pathway in the presence of protonic acid/functionalized protonic acid. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
作为聚苯胺模型化合物的齐聚物具有规整的分子结构、良好的电活性以及易加工性能 ,使得齐聚物的研究成为导电高分子研究领域的一个研究热点 .结果表明 ,聚苯胺八聚体对有机气体的敏感性是聚苯胺的 1 0 0 0倍 [1] ,并且导电率与之相似 ,而苯封端苯胺三聚体及四聚体在金属防腐方面也显示了优良的抗腐蚀性 [2 ] .因此 ,合成具有不同链段的聚苯胺齐聚物 (母体苯胺齐聚物以及包括苯基封端 /氨基封端在内的苯胺齐聚物及其衍生物 )就变得十分重要 .合成聚苯胺齐聚物已有许多文献报道 ,如Honzl等 [3]的缩聚法、Monkman[4 ]的取代还原法和 Buchwald…  相似文献   

15.
The formation mechanism of Polyaniline was derived from the post reactions of the polymerization intermediate. The intermediate, RPAN, (3000 Å thickness film, purplish-blue in color) was isolated on silane modified substrates after polymerization for 10 minutes. Under air, RPAN converts to emeraldine salt within a couple of seconds. In the inert atmosphere, the conversion occurred at a relatively low speed. In acidic media, the intermediate was believed to be a very reactive radical cation, which oxidized then coupled with aniline oligomers to start the auto-catalytic chain growing process. When the radical cation was quenched in water or acid, a violet species, IPAN, with a structure composed mostly of pernigraniline units, was formed. IPAN reacts slowly with aniline oligomers in the presence of protons and oxidants to emeraldine. The conversion processes were monitored by IR and Uv/Vis/NIR spectroscopy.  相似文献   

16.
New Approaches to Synthesizing Electroactive Polymers   总被引:5,自引:0,他引:5  
The chemical oxidative polymerization of aniline in a heterophase system is studied. In the presence of a solid substrate, the aniline polymerization involves two kinetically and chemically independent processes, namely, the polymerization in the bulk solution and at the substrate surface. The growth of the polyaniline coating at the substrate surface includes three successive processes: interfacial polymerization, adsorptive polymerization, and destruction of the polymer chain. The interfacial oxidative polymerization of diphenylamine and phenothiazine is examined. The yield and chemical structure of polymers is shown to depend on the polymerization conditions.  相似文献   

17.
Polyaniline (PAni) films of different intrinsic oxidation states, including emeraldine salt, emeraldine base and leucoemeraldine base, were synthesized. Free‐standing membranes and thin film bilayers of aluminum–polyaniline were fabricated by magnetron sputter deposition of aluminum onto polyaniline films. Aluminum–polyaniline samples were analyzed by transmission electron microscopy (TEM) to investigate the microstructures of specimens, including cross‐sectional TEM micrographs of the metal‐polyaniline interfacial structure not previously reported in the literature. Auger electron spectroscopy (AES) and X‐ray photoelectron spectroscopy (XPS) were employed to study the chemical bonding and interaction between deposited aluminum and polyaniline at the interface. Results indicated that the intrinsic oxidation state of the polyaniline influenced the chemistry of the aluminum–polyaniline interface. Distinct interaction between aluminum and polyaniline in the emeraldine salt‐form was observed. However, there was no evidence of direct interactions of the aluminum with emeraldine base and leucoemeraldine base polyaniline. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is devoted to the preparation of polyaniline/lead dioxide composites (PANI/PbO2) via chemical oxidation of aniline in H2SO4 medium using β-PbO2 as an oxidant. The parameters affecting the polymerization reaction are considered. These parameters are [aniline], amount of β-PbO2, stirring time, and different acids. The prepared composites were characterized by SEM, FT-IR, XRD, TGA, DTA, and elemental analysis. From XRD and FT-IR spectra, it was concluded that high molecular weight polymer could be obtained with high aniline concentration, high amount of β-PbO2, increasing polymerization time and polymerization of ANI at lower temperatures. Thermogravimetric study exhibited that the composite prepared using high amount of β-PbO2 has a higher thermal stability. The application of the composites in the oxidative degradation of Alizarin yellow G and Acid alizarin violet N dyes exhibited good catalytic activity in presence of H2O2 as an oxidant. The reactions followed first-order kinetics and the rate constants were determined.  相似文献   

19.
Semi‐empirical quantum chemical study of the oxidative polymerization of aniline with ammonium peroxydisulfate, in aqueous solutions without added acid, has been based on the MNDO‐PM3 computations of thermodynamic, redox, and acid–base properties of reactive species and the intermediates, combined with the MM2 molecular mechanics force‐field method and conductor‐like screening model of solvation. The main reaction routes of aniline tetramerization are proposed. The regioselectivity of the formation of aniline tetramers by redox and electrophilic aromatic substitution reactions is analyzed. It was proved that the linear N? C4 coupled tetra‐aniline is formed as a dominant product by three different pathways: comproportionation redox reaction between N‐phenyl‐1,4‐benzoquinonediimine and 4‐aminodiphenylamine, the one‐electron oxidation of aniline with its half‐oxidized N? C4 coupled trimer, and the electrophilic aromatic substitution reaction of aniline with fully oxidized N? C4 coupled trianiline nitrenium cation. The electrophilic aromatic substitution reaction of the N? C4 coupled aniline trimer with aniline nitrenium cation, as well as the oxidation of aniline with half‐oxidized branched trimer, lead to the branched aniline tetramers. The competing character of different tetramerization routes is highlighted. The oxidative intramolecular cyclization of branched oligoanilines and polyaniline, leading to the generation of substituted phenazine units, has been predicted to accompany the classical routes of the polymerization of aniline. Various molecular (branched vs. linear) oligomeric structures produced at different level of acidity during the course of polymerization and their impact on the formation of supramolecular structures of conducting polyaniline (nanorods and nanotubes vs. granular morphology), are discussed. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

20.
Sandwich-like polyaniline/graphene composite nanosheets have been synthesized by chemical oxidation polymerization of aniline monomer on the surfaces of reduced graphene oxide nanosheets in the absence of any surfactants. The influences of the mass ratios of aniline and reduced graphene oxide on the sizes and morphologies of polyaniline/graphene nanocomposites have been investigated. As the mass ratio of aniline and reduced graphene oxide is smaller than 12:1, polymerization reaction of aniline occurs on the surfaces of reduced graphene oxide by heterogeneous nucleation to form sandwich-like polyaniline/graphene composite nanosheets. However, besides sandwich-like polyaniline/graphene composite nanosheets, polyaniline nanofibers are formed by homogeneous nucleation. In comparison with reduced graphene oxide and polyaniline nanofibers, the obtained sandwich-like polyaniline/graphene composite nanosheets exhibit good electrochemical performances due to the synergistic effect between graphene and polyaniline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号