首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
The present study described the preparation and application of a reversed-phase/zwitterionic/hydrophilic interaction liquid chromatography stationary phase, named as SIL-PS. The SIL-PS was prepared through a four-step reaction, chemical bonding, nucleophilic addition, SN1 substitution, and sulfonation on the silica matrix. It was featured with C12 alkyl chain, quaternary ammonium, tertiary amine, and sulfonate groups. After SIL-PS was packed into the stainless steel column (150?× 2.1 mm i.d.), chromatographic parameters, including acetonitrile content, pH, and ionic strength of the mobile phase, and the column temperature, were systematically investigated to study the retention mechanism. Electrostatic adsorptive/repulsive, partition, and hydrogen-bonding interactions were demonstrated to contribute to the retention. The stability of the SIL-PS was satisfactory, with relative standard deviations of retention factors of 1.93, 2.08, and 1.90% for loxoprofen, adenosine, and liquiritin, respectively. Additionally, to investigate the separation selectivity, the non-steroidal anti-inflammatory drugs, nucleobases/nucleotides, and alkaloids/glycosides were separated; the HPLC fingerprinting of the Cortex phellodendri extract was also conducted, and the separation performance was superior to that of the C18 column in terms of peak shape, resolution, and analytical time. The results revealed that the prepared SIL-PS possessed multifunctionalities for multiretention and could be promising for complicated samples.  相似文献   

2.
A mixed-mode chromatographic packing material, C18 and diol groups modified silica (C18-Diol), was prepared with controllable hydrophobicity and hydrophilicity. It demonstrated excellent aqueous compatibility and stability in aqueous mobile phase; compared to the traditional C18 column, improved peak shape of basic analytes was also obtained. Additionally, it exhibited both reversed-phase liquid chromatographic (RPLC) and hydrophilic interaction chromatographic (HILIC) performance; the analyte separation scope was thus enlarged, demonstrated by simultaneous separation of twenty acids, bases and neutrals. More interestingly, a novel on-line two-dimensional liquid chromatography on the single column (2D-LC-1C) was established by modifying the high performance liquid chromatographic instrument only with the addition of an extra six-port two-position valve. The early co-eluted components of the extract of Lonicera japonica on the 1st-dimension (RPLC) were collected for the online re-injection to the 2nd-dimension (HILIC) by conveniently varying the mobile phase components. Six more peaks were obtained. The established system was simple, easy operation and low cost, which had advantages in analyzing complicated samples.  相似文献   

3.
A new stationary phase demonstrated effective separation towards polar analytes or their counterions within a single run.  相似文献   

4.
Fourteen commercially available particle-packed columns and a monolithic column for hydrophilic interaction liquid chromatography (HILIC) were characterized in terms of the degree of hydrophilicity, the selectivity for hydrophilic-hydrophobic substituents, the selectivity for the regio and configurational differences in hydrophilic substituents, the selectivity for molecular shapes, the evaluation of electrostatic interactions, and the evaluation of the acidic-basic nature of the stationary phases using nucleoside derivatives, phenyl glucoside derivatives, xanthine derivatives, sodium p-toluenesulfonate, and trimethylphenylammonium chloride as a set of samples. Principal component analysis based on the data of retention factors could separate three clusters of the HILIC phases. The column efficiency and the peak asymmetry factors were also discussed. These data on the selectivity for partial structural differences were summarized as radar-shaped diagrams. This method of column characterization is helpful to classify HILIC stationary phases on the basis of their chromatographic properties, and to choose better columns for targets to be separated. Judging from the retention factor for uridine, these HILIC columns could be separated into two groups: strongly retentive and weakly retentive stationary phases. Among the strongly retentive stationary phases, zwitterionic and amide functionalities were found to be the most selective on the basis of partial structural differences. The hydroxyethyl-type stationary phase showed the highest retention factor, but with low separation efficiency. Weakly retentive stationary phases generally showed lower selectivity for partial structural differences.  相似文献   

5.
Fingerprint analysis is considered one of the most powerful approaches to quality control in traditional Chinese medicines (TCMs). In this study, a binary chromatographic fingerprint analysis was developed using hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) to gain more chemical information about polar compounds and weakly polar compounds. This method was used to construct a chromatographic fingerprint of Ligusticum chuanxiong. The two chromatographic methods demonstrated good precision, reproducibility, and stability, with relative standard deviations of <2% for retention time and 7% for peak area for both HILIC and RPLC separations. Data from the analysis of 14 samples by HILIC and RPLC were processed with similarity analysis, with correlation coefficients and congruence coefficients. This binary fingerprint analysis, using two chromatographic modes, is a powerful tool for characterizing the quality of samples, and can be used for the comprehensive quality control of TCMs.  相似文献   

6.
Creatine, phosphocreatine, and adenine nucleotides are highly polar markers of myocardial metabolism that are poorly retained on RP silica sorbents. Zirconia represents an alternative material to silica with high promise to be used in hydrophilic interaction chromatography (HILIC). This study describes a first systematic investigation of the ability of ZrO2 to separate creatine, phosphocreatine, adenosine 5′‐monophosphate, adenosine 5′‐diphosphate, and adenosine 5′‐triphosphate and compares the results with those obtained on TiO2. All analytes showed a HILIC‐like retention pattern when mobile phases of different strengths were tested. Stronger retention and better column performance were achieved in organic‐rich mobile phases as compared to aqueous conditions, where poor retention and insufficient column performance were observed. The effect of mobile phase pH and ionic strength was evaluated as well. The analysis of myocardial tissue demonstrated that all compounds were separated in a relevant biological material and thus proved ZrO2 as a promising phase for HILIC of biological samples that deserves further investigation.  相似文献   

7.
Carbon nanoparticles (CNPs) (6–18 nm in size) were prepared by refluxing corn stalk soot in nitric acid. The obtained acid-oxidized CNPs are soluble in water due to the existence of carboxylic and hydroxyl groups. 13C NMR measurement shows the CNPs are mainly of sp2 and sp3 carbon structure different from CNPs obtained from candle soot and natural gas soot. Furthermore, these CNPs exhibit unique photoluminescence properties. Interestingly, the CNPs might be exploited to immobilize on the surface of porous silica particles as chromatographic stationary phase. The resultant packing material was evaluated by high-performance liquid chromatography, indicating that the new stationary phase could be used in hydrophilic interaction liquid chromatography (HILIC) and per aqueous liquid chromatography (PALC) modes. The separation of five nucleosides, four sulfa compounds and safflower injection was achieved by using the new column in the HILIC and PALC modes, respectively.  相似文献   

8.
A novel cationic hydrophilic interaction monolithic stationary phase based on the copolymerization of 2-(methacryloyloxy)ethyltrimethylammonium methyl sulfate (META) and pentaerythritol triacrylate (PETA) in a binary porogenic solvent consisting of cyclohexanol/ethylene glycol was designed for performing capillary liquid chromatography. While META functioned as both the ion-exchange sites and polar ligand provider, the PETA, a trivinyl monomer, was introduced as cross-linker. The monolithic stationary phases with different properties were easily prepared by adjusting the amount of META in the polymerization solution as well as the composition of the porogenic solvent. The hydrophilicity of the monolith increased with increasing content of META in the polymerization mixture. A typical hydrophilic interaction chromatography mechanism was observed when the content of acetonitrile in the mobile phase was higher than 20%. The poly(META-co-PETA) monolith showed very good selectivity for neutral, basic and acidic polar analytes. For polar-charged analytes, both hydrophilic interaction and electrostatic interaction contributed to their retention. Peak tailing of basic compounds was avoided and the efficient separation of benzoic acid derivatives was obtained.  相似文献   

9.
The influence of the mobile phase and temperature, on the retention behavior of seven aliphatic acids (pyruvic, gluconic, 2‐oxoglutaric, tartaric, malic, oxalic, and citric acid) in hydrophilic interaction liquid chromatography on zwitterionic stationary phases with sulfobetaine and phosphorylcholine ligands is investigated. In agreement with the van't Hoff model, most acids show linear ln k versus 1/T plots. However, the retention of structurally symmetrical oxalic and tartaric dicarboxylic acids is almost independent of temperature, or slightly increases at rising temperature. The experimental parameters of the van't Hoff plots suggest positive entropic contributions to the retention of these symmetrical acids, possibly connected with changes in molecular symmetry on their adsorption. The type of the zwitterionic stationary phase and the mobile phase composition (the molar concentration of acetate buffer and the volume fraction of acetonitrile) affect the retention and the selectivity of the separation of the acids.  相似文献   

10.
A novel carboxyl‐bonded silica stationary phase was prepared by “thiol‐ene” click chemistry. The resultant Thiol‐Click‐COOH phase was evaluated under hydrophilic interaction liquid chromatography (HILIC) mobile phase conditions. A comparison of the chromatographic performance of Thiol‐Click‐COOH and pure silica columns was performed according to the retention behaviors of analytes and the charged state of the stationary phases. The results indicated that the newly developed Thiol‐Click‐COOH column has a higher surface charge and stronger hydrophilicity than the pure silica column. Furthermore, the chromatographic behaviors of five nucleosides on the Thiol‐Click‐COOH phase were investigated in detail. Finally, a good separation of 13 nucleosides and bases, and four water‐soluble vitamins was achieved.  相似文献   

11.
A rapid procedure for the determination of memantine based on hydrophilic interaction chromatography with fluorescence detection was developed. Fluorescence detection after postcolumn derivatization with o‐phtaldialdehyde/2‐mercaptoethanol was performed at excitation and emission wavelengths of 345 and 450 nm, respectively. The postcolumn reaction conditions such as reaction temperature, derivatization reagent flow rate, and reagents concentration were studied due to steric hindrance of amino group of memantine. The derivatization reaction was applied for the hydrophilic interaction liquid chromatography method which was based on Cogent Silica‐C stationary phase with a mobile phase consisting of a mixture of 10 mmol/L citric acid and 10 mmol/L o‐phosphoric acid (pH 6.0) with acetonitrile using an isocratic composition of 2:8 v/v. The benefit of the reported approach consists in a simple sample pretreatment and a quick and sensitive hydrophilic interaction chromatography method. The developed method was validated in terms of linearity, accuracy, precision, and selectivity according to the International Conference on Harmonisation guidelines. The developed method was successfully applied for the analysis of commercial memantine tablets.  相似文献   

12.
Liquid chromatographic assays were developed using a mixed‐mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve‐mediated column switching and was based upon a single high‐performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion‐exchange, (ii) mixed‐mode interactions under an applied dual gradient (reversed‐phase/ion‐exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed‐mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well‐resolved unknown peaks.  相似文献   

13.
The separation properties of five silica packings bonded with 1-[3-(trimethoxysilyl)propyl]urea in the range of 0–3.67 μmol m−2 were investigated in the hydrophilic interaction chromatography (HILIC) elution mode. An increase of the ligand surface density promoted retention of non-charged polar compounds and even more so for acids. An opposite trend was observed for bases, while the amphoteric compound tyrosine exhibited a U-shaped response profile. An overall partitioning retention mechanism was incompatible with these observations; rather, the substantial involvement of adsorptive interactions was implicated. Support for the latter was provided by column-specific changes in analyte retention and concomitant selectivity effects due to variations of salt concentration, type of salt, pH value, organic modifier content, and column temperature. Silica was more selective for separating compounds differing in charge state (e.g. tyramine vs. 4-hydroxybenzoic acid), while in cases where structural differences of solutes resided in non-charged polar groups (e.g. tyramine vs. 5-hydroxydopamine, nucleoside vs. nucleobase) more selective separations were obtained on bonded phases. Hierarchical cluster analysis of the home-made urea-type and three commercial amide-type bonded packings evinced considerable differences in separation properties. The present data emphasise that the role of the packing material under HILIC elution conditions is hardly just the polar support for a dynamic coating with a water-enriched layer. Three major retention mechanisms are claimed to be relevant on bare silica and the urea-type bonded packings: (i) HILIC-type partitioning, (ii) HILIC-type weak adsorption such as hydrogen bonding between solutes and ligands or solutes and silanols (potentially influenced by individual degrees of solvation, salt bridging, etc.), (iii) strong electrostatic (ionic) solute–silanol interactions (attractive/repulsive). Even when non-charged polar bonded phases are used, solute–silanol interactions should not be discounted, which makes them a prime parameter to be characterised by HILIC column tests. Multi/mixed-mode type separations seem to be common under HILIC elution conditions, associated with a great deal of selectivity increments. They are accessible and controllable by a careful choice of the type of packing, the mobile phase composition, and the temperature.  相似文献   

14.
Molecular simulations of water/acetonitrile and water/methanol mobile phases in contact with a C(18) stationary phase were carried out to examine the molecular-level effects of mobile phase composition on structure and retention in reversed-phase liquid chromatography. The simulations indicate that increases in the fraction of organic modifier increase the amount of solvent penetration into the stationary phase and that this intercalated solvent increases chain alignment. This effect is slightly more apparent for acetonitrile containing solvents. The retention mechanism of alkane solutes showed contributions from both partitioning and adsorption. Despite changes in chain structure and solvation, the molecular mechanism of retention for alkane solutes was not affected by solvent composition. The mechanism of retention for alcohol solutes was primarily adsorption at the interface between the mobile and stationary phase, but there were also contributions from interactions with surface silanols. The interaction between the solute and surface silanols become very important at high concentrations of acetonitrile.  相似文献   

15.
2H NMR has been used as a tool for probing the state of water in hydrophilic stationary phases for liquid chromatography at temperatures between −80 and +4 °C. The fraction of water that remained unfrozen in four different neat silicas with nominal pore sizes between 60 and 300 Å, and in silicas with polymeric sulfobetaine zwitterionic functionalities prepared in different ways, could be determined by measurements of the line widths and temperature-corrected integrals of the 2H signals. The phase transitions detected during thawing made it possible to estimate the amount of non-freezable water in each phase. A distinct difference was seen between the neat and modified silicas tested. For the neat silicas, the relationship between the freezing point depression and their pore size followed the expected Gibbs–Thomson relationship. The polymeric stationary phases were found to contain considerably higher amounts of non-freezable water compared to the neat silica, which is attributed to the structural effect that the sulfobetaine polymers have on the water layer close to the stationary phase surface. The sulfobetaine stationary phases were used alongside the 100 Å silica to separate a number of polar compounds in hydrophilic interaction (HILIC) mode, and the retention characteristics could be explained in terms of the surface water structure, as well as by the porous properties of the stationary phases. This provides solid evidence supporting a partitioning mechanism, or at least of the existence of an immobilized layer of water into which partitioning could be occurring.  相似文献   

16.
In this study, a comparative investigation was performed of HPLC Ascentis® (2.7 μm particles) columns based on fused-core particle technology and Acquity® (1.7 μm particles) columns requiring UPLC instruments, in comparison with Chromolith™ RP-18e columns. The study was carried out on mother and vegetal tinctures of Passiflora incarnata L. on one single or two coupled columns. The fundamental attributions of the chromatographic profiles are evaluated using a chemometric procedure, based on the AutoCovariance Function (ACVF). Different chromatographic systems are compared in terms of their separation parameters, i.e., number of total chemical components (mtot), separation efficiency (σ), peak capacity (nc), overlap degree of peaks and peak purity. The obtained results show the improvements achieved by HPLC columns with narrow size particles in terms of total analysis time and chromatographic efficiency: comparable performance are achieved by Ascentis® (2.7 μm particle) column and Acquity® (1.7 μm particle) column requiring UPLC instruments. The ACVF plot is proposed as a simplified tool describing the chromatographic fingerprint to be used for evaluating and comparing chemical composition of plant extracts by using the parameters D% – relative abundance of the deterministic component – and cEACF – similarity index computed on ACVF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号