首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this work, we propose solvent-based de-emulsification dispersive liquid–liquid microextraction (SD-DLLME) as a simple, rapid and efficient sample pretreatment technique for the extraction and preconcentration of organochlorine pesticides (OCPs) from environmental water samples. Separation and analysis of fifteen OCPs was carried out by gas chromatography–mass spectrometry (GC/MS). Parameters affecting the extraction efficiency were systematically investigated. The detection limits were in the range of 2–50 ng L−1 using selective ion monitoring (SIM). The precision of the proposed method, expressed as relative standard deviation, varied between 3.5 and 10.2% (n = 5). Results from the analysis of spiked environmental water samples at the low-ppb level met the acceptance criteria set by the EPA.  相似文献   

2.
3.
A new micro-extraction technique named low-density magnetofluid dispersive liquid–liquid microextraction (LMF-DMMLE) has been developed, which permits a wider range of solvents and can be combined with various detection methods. Comparing with the existing low density solvents micro-extraction methods, no special devices and complicated operations were required during the whole extraction process. Dispersion of the low-density magnetofluid into the aqueous sample is achieved by using vortex mixing, so disperser solvent was unnecessary. The extraction solvent was collected conveniently with an external magnetic field placed outside the extraction container after dispersing. Then, the magnetic nanoparticles were easily removed by adding precipitation reagent under the magnetic field. In order to evaluate the validity of this method, ten organochlorine pesticides (OCPs) were chosen as the analytes. Parameters influencing the extraction efficiency such as extraction solvents, volume of extraction solvents, extraction time, and ionic strength were investigated and optimized. Under the optimized conditions, this method showed high extraction efficiency with low limits of detection of 1.8–8.4 ng L−1, good linearity in the range of 0.05–10.00 μg L−1 and the precisions were in the range of 1.3–9.6% (RSD, n = 5). Finally, this method was successfully applied in the determination of OCPs in real water samples.  相似文献   

4.
Dispersive liquid–liquid microextraction with little solvent consumption (DLLME-LSC), a novel dispersive liquid–liquid microextraction (DLLME) technique with few solvent requirements (13 μL of a binary mixture of disperser solvent and extraction solvent in the ratio of 6:4) and short extraction time (90 s), has been developed for extraction of organochlorine pesticides (OCPs) from water samples prior to gas chromatography/mass spectrometry analysis. In DLLME-LSC, much less volume of organic solvent is used as compared to DLLME. The new technique is less harmful to environment and yields a higher enrichment factor (1885–2648-fold in this study). Fine organic droplets were formed in the sample solution by manually shaking the test tube containing the mixture of sample solution and extraction solvent. The large surface area of the organic solvent droplets increases the rate of mass transfer from the water sample to the extractant and produces efficient extraction in a short period of time. DLLME-LSC shows good repeatability (RSD: 4.1–9.7% for reservoir water; 5.6–8.9% for river water) and high sensitivity (limits of detection: 0.8–2.5 ng/L for reservoir water; 0.4–1.3 ng/L for river water). The method can be used on various water samples (river water, tap water, sea water and reservoir water). It can be used for routine work for the investigation of OCPs.  相似文献   

5.
Single-drop microextraction (SDME) followed by gas chromatography–mass spectrometry detection was used for the determination of some carbamate pesticides in water samples. The studied pesticides were thiofanox, carbofuran, pirimicarb, methiocarb, carbaryl, propoxur, desmedipham and phenmedipham. Two alternative sample introduction methods have been examined and compared; SDME followed by cool on-column injection (without derivatization) and SDME followed by in-microvial derivatization and splitless injection. Acetic anhydride was used as derivatization reagent. Parameters that affect the derivatization reaction yield and the extraction efficiency of the SDME method were studied and optimized. The analytical performances and possible applications of both approaches were investigated. Relative standard deviations for the studied compounds ranged from 3.2 to 8.3%. The detection limits obtained by the derivatization method were found to be in the range 3–35 ng/L. Using cool on-column injection (without derivatization), the detection limits were between 30 and 80 ng/L.  相似文献   

6.
This paper describes a novel, simple and environmentally friendly method for rapid determination of the amide herbicides metoalchlor, acetochlor, and butachlor. It is based on dispersive liquid-liquid microextraction and gas chromatography–mass spectrometry. Factors that may influence the enrichment efficiency, such as type and volume of extraction solvent, type and volume of dispersive solvent, extraction time, and content of NaCl, were investigated and optimized in detail. Under the optimum conditions, the limits of detection of metoalchlor, acetochlor, and butachlor were 0.02, 0.04, and 0.003 μg L−1, respectively. The experimental results indicated that there was linearity over the range 0.1–50 μg L−1 and good reproducibility with relative standard deviations over the range 1.6–3.0% (n = 5). The proposed method has been applied for the analysis of real-world water samples, and satisfactory results were achieved. Average recoveries of spiked herbicides were in the range 80.3–108.8%. All of these indicated that the developed method would be an efficient method for simultaneous determination of the three herbicides in environmental water samples.  相似文献   

7.
8.
A simple, rapid and efficient method, dispersive liquid–liquid microextraction (DLLME) in conjunction with high-performance liquid chromatography (HPLC), has been developed for the determination of three carbamate pesticides (methomyl, carbofuran and carbaryl) in water samples. In this extraction process, a mixture of 35 µL chlorobenzene (extraction solvent) and 1.0 mL acetonitrile (disperser solvent) was rapidly injected into the 5.0 mL aqueous sample containing the analytes. After centrifuging (5 min at 4000 rpm), the fine droplets of chlorobenzene were sedimented in the bottom of the conical test tube. Sedimented phase (20 µL) was injected into the HPLC for analysis. Some important parameters, such as kind and volume of extraction and disperser solvent, extraction time and salt addition were investigated and optimised. Under the optimum extraction condition, the enrichment factors and extraction recoveries ranged from 148% to 189% and 74.2% to 94.4%, respectively. The methods yielded a linear range in the concentration from 1 to 1000 µg L?1 for carbofuran and carbaryl, 5 to 1000 µg L?1 for methomyl, and the limits of detection were 0.5, 0.9 and 0.1 µg L?1, respectively. The relative standard deviations (RSD) for the extraction of 500 µg L?1 carbamate pesticides were in the range of 1.8–4.6% (n = 6). This method could be successfully applied for the determination of carbamate pesticides in tap water, river water and rain water.  相似文献   

9.
An in-syringe demulsified dispersive liquid–liquid microextraction (ISD–DLLME) technique was developed using low-density extraction solvents for the highly sensitive determination of the three trace fungicides (azoxystrobin, diethofencarb and pyrimethanil) in water samples by high performance liquid chromatography–mass spectrometry chromatography–diode array detector/electrospray ionisation mass spectrometry. In the proposed technique, a 5-mL syringe was used as an extraction, separation and preconcentration container. The emulsion was obtained after the mixture of toluene (extraction solvent) and methanol (dispersive solvent) was injected into the aqueous bulk of the syringe. The obtained emulsion cleared into two phases without centrifugation, when an aliquot of methanol was introduced as a demulsifier. The separated floating organic extraction solvent was impelled and collected into a pipette tip fitted to the tip of the syringe. Under the optimal conditions, the enrichment factors for azoxystrobin, diethofencarb and pyrimethanil were 239, 200, 195, respectively. The limits of detection, calculated as three times the signal-to-noise ratio (S N−1), were 0.026 μg L−1 for azoxystrobin, 0.071 μg L−1 for diethofencarb and 0.040 μg L−1 for pyrimethanil. The repeatability study was carried out by extracting the spiked water samples at concentration levels of 0.02 μg mL−1 for all the three fungicides. The relative standard deviations varied between 4.9 and 8.2% (n = 5). The recoveries of all the three fungicides from tap, lake and rain water samples at spiking levels of 0.2, 1, 5 μg L−1 were in the range of 90.0–105.0%, 86.0–114.0% and 88.6–110.0%, respectively. The proposed ISD–DLLME technique was demonstrated to be simple, practical and efficient for the determination of different kinds of fungicide residues in real water samples.  相似文献   

10.
A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in watermelon and tomato samples was developed by dispersive liquid–liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detection (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimised to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 10 to 1000?ng?g?1 for all the five carbamate pesticides, with the correlation coefficients (r) varying from 0.9982 to 0.9992. Good enrichment factors were achieved ranging between 80 and 177, depending on the compound. The limits of detection (LODs) (S/N?=?3) were ranged from 0.5 to 1.5?ng?g?1. The method has been successfully applied to the analysis of the pesticide residues in watermelon and tomato samples. The recoveries of the method fell in the range between 76.2% to 94.5% with RSDs less than 9.6%, indicating the feasibility of the DLLME method for the determination of the five carbamate pesticides in watermelon and tomato samples.  相似文献   

11.
12.
An ultra-preconcentration technique composed of solid-phase extraction (SPE) and dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–flame photometric detection (GC–FPD) was used for determination of thirteen organophosphorus pesticides (OPPs) including phorate, diazinon, disolfotane, methyl parathion, sumithion, chlorpyrifos, malathion, fenthion, profenphose, ethion, phosalone, azinphose-methyl and co-ral in aqueous samples. The analytes were collected from large volumes of aqueous solutions (100 mL) into 100 mg of a SPE C18 sorbent. The effective variables of SPE including type and volume of elution solvent, volume and flow rate of sample solution, and salt concentration were investigated and optimized. Acetone was selected as eluent in SPE and disperser solvent in DLLME and chlorobenzene was used as extraction solvent. Under the optimal conditions, the enrichment factors were between 15,160 and 21,000 and extraction recoveries were 75.8–105.0%. The linear range was 1–10,000 ng L?1 and limits of detection (LODs) were between 0.2 and 1.5 ng L?1. The relative standard deviations (RSDs) for 50 ng L?1 of OPPs in water with and without an internal standard, were in the range of 1.4–7.9% (n = 5) and 4.0–11.6%, respectively. The relative recoveries of OPPs from well and farm water sat spiking levels of 25 and 250 ng L?1 were 88–109%.  相似文献   

13.
14.
Pre-concentration and determination of 8 phenolic compounds in water samples has been achieved by in situ derivatization and using a new liquid–liquid microextraction coupled GC–MS system. Microextraction efficiency factors have been investigated and optimized: 9 μL 1-undecanol microdrop exposed for 15 min floated on surface of a 10 mL water sample at 55 °C, stirred at 1200 rpm, low pH level and saturated salt conditions. Chromatographic problems associated with free phenols have been overcome by simultaneous in situ derivatization utilizing 40 μL of acetic anhydride and 0.5% (w/v) K2CO3. Under the selected conditions, pre-concentration factor of 235–1174, limit of detection of 0.005–0.68 μg/L (S/N = 3) and linearity range of 0.02–300 μg/L have been obtained. A reasonable repeatability (RSD ≤ 10.4%, n = 5) with satisfactory linearity (0.9995 ≥ r2 ≥ 0.9975) of results illustrated a good performance of the present method. The relative recovery of different natural water samples was higher than 84%.  相似文献   

15.
The performance of the dispersive liquid–liquid microextraction (DLLME) technique for the determination of eight UV filters and a structurally related personal care species, benzyl salicylate (BzS), in environmental water samples is evaluated. After extraction, analytes were determined by gas chromatography combined with mass spectrometry detection (GC-MS). Parameters potentially affecting the performance of the sample preparation method (sample pH, ionic strength, type and volume of dispersant and extractant solvents) were systematically investigated using both multi- and univariant optimization strategies. Under final working conditions, analytes were extracted from 10 mL water samples by addition of 1 mL of acetone (dispersant) containing 60 μL of chlorobenzene (extractant), without modifying either the pH or the ionic strength of the sample. Limits of quantification (LOQs) between 2 and 14 ng L−1, inter-day variability (evaluated with relative standard deviations, RSDs) from 9% to 14% and good linearity up to concentrations of 10,000 ng L−1 were obtained. Moreover, the efficiency of the extraction was scarcely affected by the type of water sample. With the only exception of 2-ethylhexyl-p-dimethylaminobenzoate (EHPABA), compounds were found in environmental water samples at concentrations between 6 ± 1 ng L−1 and 26 ± 2 ng mL−1.  相似文献   

16.
In this work, the simultaneous separation of a group of 12 pesticides (carbaryl, fensulfothion, mecoprop, fenamiphos, haloxyfop, diclofop, fipronil, profenofos, fonofos, disulfoton, nitrofen, and terbufos) by nano-liquid chromatography with UV detection is described. For the analyses, a 100 μm internal diameter capillary column packed with silica modified with phenyl groups was used. Experimental parameters, including the use of a trapping column for increasing the sensitivity, were optimized and validated. A preliminary study of the applicability of a rapid and practical dispersive solid-phase extraction (DSPE) procedure was developed for the extraction of some of these pesticides (carbaryl, fensulfothion, fenamiphos, fipronil, profenofos, fonofos, disulfoton, nitrofen, and terbufos) from Milli-Q water samples using multi-walled carbon nanotubes (MWCNTs). The method was validated through a recovery study at three different levels of concentration, obtaining limits of detection in the range 0.016–0.067 μg/L (below European Union maximum residue limits) for the majority of the pesticides. In this work, MWCNTs were reused up to five times, representing an important reduction of the waste of stationary phase. Furthermore, DSPE permitted a clear diminution of the total sample treatment time with respect to conventional SPE.  相似文献   

17.
An analytical method, solid-phase extraction combined with dispersive liquid–liquid microextration (SPE–DLLME), was established to determine polybrominated diphenyl ethers (PBDEs) in water and plant samples. After concentration and purification of the samples in LC-C18 column, 1.0-mL elution sample containing 22.0 μL 1,1,2,2-tetrachloroethane was injected rapidly into the 5.0-mL pure water. After extraction and centrifuging, the sedimented phase was injected rapidly into gas chromatography with electron-capture detection (GC–ECD). For water samples, enrichment factors (EFs) are in the range of 6838–9405 under the optimum conditions. The calibration curves are linear in the range of 0.1–100 ng L−1 (BDEs 28, 47) and 0.5–500 ng L−1 (BDEs 100, 99, 85, 154, 153). The relative standard deviations (RSDs) and the limits of detection (LODs) are in the range of 4.2–7.9% (n = 5) and 0.03–0.15 ng L−1, respectively. For plant samples, RSDs and LODs are in the range of 5.9–11.3% and 0.04–0.16 μg kg−1, respectively. The relative recoveries of well, river, sea, leachate, and clover samples, spiked with different levels of PBDEs, are 66.8–94.1%, 72.2–100.5%, 74.5–110.4%, 62.1–105.1%, 66.1–91.7%, 62.4–88.9%, and 64.5–83.2%, respectively. The results show that SPE–DLLME is a suitable method for the determination of PBDEs in water and plant samples.  相似文献   

18.
A new method based on liquid–liquid–liquid microextraction combined with electrospray ionization-ion mobility spectrometry (LLLME-ESI-IMS) was used for the determination of pentazocine in urine and plasma samples. Experimental parameters which control the performance of LLLME, such as selection of composition of donor and acceptor phase, type of organic solvent, ionic strength of the sample, extraction temperature and extraction time were studied. The limit of detection and relative standard deviation of the method were 2 ng/mL and 5.3%, respectively. The linear calibration ranged from 10 to 500 ng/mL with r2 = 0.998. Pentazocine was successfully determined in urine and plasma samples without any significant matrix effect.  相似文献   

19.
This paper describes a dispersive liquid–liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1 g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69–97% (except for thiophanate-methyl and carbofuran, which were 53–63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320–4.66 μg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water.  相似文献   

20.
A new method for the determination of four sulfonylurea herbicides (metsulfuron-methyl, chlorsulfuron, bensulfuron-methyl and chlorimuron-ethyl) in water samples was developed by dispersive liquid–liquid microextraction coupled with high performance liquid chromatography-diode array detector. Parameters that affect the extraction efficiency, such as the kind and volume of the extraction and disperser solvent, extraction time and salt addition, were investigated and optimised. Under the optimum conditions, the enrichment factors were in the range between 102 and 216. The linearity of the method was obtained in the range of 1.0–100 ng mL?1 with the correlation coefficients (r) ranging from 0.9982 to 0.9995. The method detection limits were 0.2–0.3 ng mL?1. The proposed method has been successfully applied to the analysis of target sulfonylurea herbicides in river, stream and well water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号