首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes how size exclusion chromatography (SEC) can be used to rapidly characterize Au/Pd core/shell nanoparticles (NPs). We monitored the sizes of Au/Pd core/shell NPs by effecting SEC separation using a mobile phase of 10 mM sodium dodecyl sulfate (SDS); the plot of retention time with respect to the standard size of the Au NPs was linear (R 2 = 0.991) for diameters falling in the range from 12.1 to 59.9 nm; for five consecutive runs, the relative standard deviations of these retention times were less than 0.4%. Under the optimized separation conditions, we found that the addition of the surfactant SDS stabilized the Au/Pd core/shell NP samples. In addition, SEC analysis revealed that the sizes of the Au/Pd core/shell NPs could be controlled via modification of the rate of addition of the reducing agent and the use of adequate volumes of the seed and shell precursor metal ion solutions. When using these conditions to analyze the Au/Pd core/shell NPs produced through seed-assisted synthesis, a good correlation existed between the sizes determined through SEC and transmission electron microscopy. Our results suggest that SEC is a useful technique for monitoring the sizes of NPs and nanomaterials in general.  相似文献   

2.
Fu-Ken Liu 《Chromatographia》2010,72(5-6):473-480
This paper describes the use of size-exclusion chromatography (SEC) to characterize the sizes of fabricated Au/Pt core/shell nanoparticles (NPs), which were monitored using a polymer-based SEC column (pore size: ca. 400 nm) and a mobile phase of 10 mM sodium dodecyl sulfate (SDS). The plot of the retention time with respect to the logarithm of the size of the Au NPs was very linear (R 2 = 0.999) for NP diameters falling in the range from 5.3 to 59.9 nm. The relative standard deviation (n = 5) of these retention times was less than 0.20%. When using SEC to analyze synthetic products, we found that the sizes of the fabricated Au/Pt core/shell NPs could be controlled via modification of the volumes of the seed, SDS, and sodium hydroxide solutions. A good correlation existed between the sizes determined through SEC and those determined using transmission electron microscopy. Thus, polymer-based SEC appears to be a useful technique for monitoring the sizes of NPs—and nanomaterials in general.  相似文献   

3.
In this study, we used size-exclusion chromatography (SEC) to evaluate the sizes of Au and Au/Pd core/shell nanoparticles (NPs) that had been subjected to thermal treatment, with the eluted NPs monitored through diode array detection (DAD) of the surface plasmon (SP) absorption of the NPs. In the absence of an adequate stabilizer, thermal treatment resulted in longer retention times for the Au NPs and shorter retention times for the Au/Pd core/shell NPs in the SEC chromatograms. Thus, thermal treatment influenced the sizes of these Au and Au/Pd core/shell NPs, through digestive ripening and Ostwald-type growth, respectively. In addition, the trends in the SP absorption phenomena of the NPs in the eluted samples, as measured using DAD, were consistent with the trends of their size variations, as measured from their elution profiles. In the presence of 3A-amino-3A-deoxy-(2AS,3AS)-??-cyclodextrin (H2N-??-CD) as a stabilizer, the retention times and SP absorptions of the eluted Au and Au/Pd NP samples remained constant. Thus, H2N-??-CD is a good stabilizer against size variation duration the thermal treatment of Au and Au/Pd core/shell NPs. A good correlation existed between the sizes obtained using SEC and those provided by transmission electron microscopy. Therefore, this SEC strategy is an effective means of further searching for suitable stabilizers for NPs, especially those exposed to harsh reaction conditions (e.g., in catalytic reactions).  相似文献   

4.
Liu  Fu-Ken  Chang  Yu-Cheng 《Chromatographia》2011,74(11):767-775

In this study, we used size-exclusion chromatography (SEC) to evaluate the sizes of Au and Au/Pd core/shell nanoparticles (NPs) that had been subjected to thermal treatment, with the eluted NPs monitored through diode array detection (DAD) of the surface plasmon (SP) absorption of the NPs. In the absence of an adequate stabilizer, thermal treatment resulted in longer retention times for the Au NPs and shorter retention times for the Au/Pd core/shell NPs in the SEC chromatograms. Thus, thermal treatment influenced the sizes of these Au and Au/Pd core/shell NPs, through digestive ripening and Ostwald-type growth, respectively. In addition, the trends in the SP absorption phenomena of the NPs in the eluted samples, as measured using DAD, were consistent with the trends of their size variations, as measured from their elution profiles. In the presence of 3A-amino-3A-deoxy-(2AS,3AS)-β-cyclodextrin (H2N-β-CD) as a stabilizer, the retention times and SP absorptions of the eluted Au and Au/Pd NP samples remained constant. Thus, H2N-β-CD is a good stabilizer against size variation duration the thermal treatment of Au and Au/Pd core/shell NPs. A good correlation existed between the sizes obtained using SEC and those provided by transmission electron microscopy. Therefore, this SEC strategy is an effective means of further searching for suitable stabilizers for NPs, especially those exposed to harsh reaction conditions (e.g., in catalytic reactions).

  相似文献   

5.
This paper demonstrates that capillary electrophoresis (CE) can be employed for characterizing the sizes of a series of Au/Ag core/shell nanoparticles (NPs). We effected the CE separation of Au/Ag core/shell NPs using a mixed buffer of sodium dodecyl sulphate (SDS) (40 mM) and 3-(cyclohexylamino)propanesulfonic acid (10 mM) at pH 9.7 and an applied voltage of 20 kV. A linear relationship (R(2)>0.99) existed between the electrophoretic mobilities and the sizes of the Au/Ag core/shell NPs within the diameter range from 25 to 90 nm; the relative standard deviations of these electrophoretic mobilities were <0.9%. From the good correlation between the results obtained by CE and those provided by scanning electron microscopy, we confirmed that this CE method is a valid one for characterizing the sizes of Au/Ag core/shell NP samples. In addition, when the Au/Ag core/shell NPs were separated through CE and detected using an on-line photodiode array detector, this approach allowed the chemical characterization of the NP species. This CE approach should allow the rapid and cost-effective characterization of a number of future nanomaterials.  相似文献   

6.
Pt/Co‐core Au‐shell nanoparticles were synthesized via a two‐step route using NaBH4 as a reducing agent. The nanoparticles are characterized by UV‐vis spectroscopy, transmission electron microscopy (TEM) and powder X‐ray diffraction (XRD). The results indicate that the as‐synthesized Pt/Co‐core Au‐shell nanoparticles have a disordered face centered cubic (fcc) structure, whereas the annealed Pt/Co‐core Au‐shell nanoparticles exhibit an ordered face centered tetragonal (fct) structure. Superconducting quantum interference device (SQUID) studies reveal that the coercivity of the annealed Pt/Co‐core Au‐shell nanoparticles increases to 510 Oe after heat treatment at 500 °C for 2 h.  相似文献   

7.
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer‐by‐layer growth of Pt layers on Au NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(II) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air‐saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as‐prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring‐disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four‐electron reduction on the as‐prepared modified electrode with 5 Pt layers and first charge transfer is the rate‐determining step.  相似文献   

8.
We report on thermodynamic modeling and computer simulations on the electrochemical generation of metallic and bimetallic nanoparticles (NPs) by means of quenched molecular dynamics (QMD). The present results suggest that the spontaneous formation of core-shell NPs depends on several factors, i.e. size and shape of the core, chemical composition of the system, and under-/oversaturation conditions. Homo- and heteroatomic prototypical systems were considered. The former systems were Au and Pt. The latter were Ag(core)/Au(shell), Pt(core)/Au(shell), Au(core)/Ag(shell) and Au(core)/Pt(shell).  相似文献   

9.
《印度化学会志》2022,99(11):100770
Individual and mix metal nanoparticles of Ag and Au have been prepared by the reducing method where citrate was used as reducing/stabilizing agent. The prepared NPs were characterized with UV/Visible and transmission electron microscopic (TEM) tools. The characteristic peak in UV/Visible at 525, 444 and 531 nm for Au, Ag and Ag/Au mix NPs respectively, gave primary confirmation of prepared NPs. TEM analysis showed the size of nanoparticles as 44.04, 19.78 and 30.93 nm for Ag, Au and Ag/Au mix NPs respectively. Congo and alizarin red dye interactions studies have been performed with prepared NPs to see the removal of the pollutants from water. Congo dye has shown weaker interaction as compared to alizarin due to structural symmetry. Amongst all, the AgNPs have shown maximum 67% and 75% interactions with Congo red and alizarin respectively due to high negative charges on the surface. The Au, Ag and Au/Ag mix NPs have shown stronger interaction with bovine serum albumin (BSA) protein up to 51, 59, 55% respectively, estimated through UV/Vis and physicochemical analysis. The biological evaluations of the prepared NPs have shown their antibacterial activity against Gram + ve and –ve species showing up to 9 cm zone of inhibition. The BSA interaction and antibacterial activity of NPs reveal the importance of NPs in medicinal field.  相似文献   

10.
QD-Au NP@silica mesoporous microspheres have been fabricated as a novel enzyme-mimic nanosensor. CdTe quantum dots (QDs) were loaded into the core, and Au nanoparticles (NPs) were encapsulated in the outer mesoporous shell. QDs and Au NPs were separated in the different space of the nanosensor, which prevent the potential energy or electron transfer process between QDs and Au NPs. As biomimetic catalyst, Au NPs in the mesoporous silica shell can catalytically oxidize glucose as glucose oxidase (GOx)-mimicking. The resultant hydrogen peroxide can quench the photoluminescence (PL) signal of QDs in the microsphere core. Therefore the nanosensor based on the decrease of the PL intensity of QDs was established for the glucose detection. The linear range for glucose was in the range of 5–200 μM with a detection limit (3σ) of 1.32 μM.  相似文献   

11.
Nanomaterial-based artificial enzymes have received great attention in recent year due to their potential application in immunoassay techniques. However, such potential is usually limited by poor dispersion stability or low catalytic activity induced by the capping agent essentially required in the synthesis. In an attempt to address these challenges, here, we studied the novel Pt nanoparticles (NPs) based peroxidase-like mimic by encapsulating Pt NP in mesoporous silica (Pt@mSiO2 NPs). Compared with other nanomaterial-based artificial enzymes, the obtained Pt@mSiO2 NPs not only exhibit high peroxidase-like activity but also have good dispersion stability in buffer saline solution when grafted with spacer PEG. Results show that when the thickness of silica shell is about 9 nm the resulting Pt@mSiO2 NPs exhibit the catalytic activity similar to that of Pt NPs, which is approximately 26 times higher than that of Fe3O4 NPs (in terms of Kcat for H2O2). Due to the protection of silica shell, the subsequent surface modification with antibody has little effect on their catalytic activity. The analytical performance of this system in detecting hCG shows that after 5 min incubation the limit of detection can reach 10 ng mL−1 and dynamic linear working range is 5–200 ng mL−1. Our findings pave the way for design and development of novel artificial enzyme labeling.  相似文献   

12.
Nanoscale Ptshell–Aucore/C with a controlled shell thickness was successfully synthesized based on a successive reduction strategy. With a Au core size of 4.8 nm, a complete Pt shell of thickness ∼0.6 nm was formed at Pt/Au mole ratio 1:1. The complete coverage of Au core with Pt shell was suggested by various techniques including TEM, UV–vis and cyclic voltammetry. A higher specific activity compared to conventional Pt/C was demonstrated using the probe reaction of methanol electro-oxidation, proving the improved Pt utilization with this core-shell structure.  相似文献   

13.
The class of thermotropic ionic liquid crystals (LCs) of the metal alkanoates possesses a number of unique properties, such as intrinsic ionic conductivity, high dissolving ability and ability to form time-stable mesomorphic glasses. These ionic LCs can be used as nanoreactors for the synthesis and stabilisation of different types of nanoparticles (NPs). Thus, some semiconductors, metals and core/shell NPs were chemically synthesised in the thermotropic ionic liquid crystalline phase (smectic A) of the cadmium octanoate (CdC8) and of the cobalt octanoate (CoC8). By applying the scanning electron microscopy, the cadmium and cobalt octanoate composites containing CdS, Au, Ag and core/shell Au/CdS NPs have been studied. NPs’ sizes and dispersion distribution of the NPs’ size in the nanocomposites have been obtained.  相似文献   

14.
A simple and green method for the controllable synthesis of core–shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs) with tunable shell thickness and their application as a recyclable nanocatalyst support is presented. Magnetite Fe3O4 NPs formed in a one-pot process by the hydrothermal approach with a diameter of ∼240 nm were coated with a polydopamine shell layer with a tunable thickness of 15–45 nm. The facile deposition of Au NPs atop Fe3O4@PDA NPs was achieved by utilizing PDA as both the reducing agent and the coupling agent. The satellite nanocatalysts exhibited high catalytic performance for the reduction of p-nitrophenol. Furthermore, the recovery and reuse of the catalyst was demonstrated 8 times without detectible loss in activity. The synergistic combination of unique features of PDA and magnetic nanoparticles establishes these core–shell NPs as a versatile platform for potential applications.  相似文献   

15.
Fu-Ken Liu 《Chromatographia》2007,66(9-10):791-796
In this paper we report the use of size-exclusion chromatography (SEC) for rapid determination of the sizes and size distributions of Au nanoparticles (NPs) prepared by seed-assisted synthesis. Analytical separation of Au NPs was performed in a polymer-based column of pore size 400 nm. We characterized the sizes and size distributions of the Au NPs by using 10 mM sodium dodecyl sulfate (SDS) as mobile phase and obtained a linear relationship (R 2 = 0.986) between retention time and size of Au NPs within the range 9.8–79.1 nm; the relative standard deviations of these retention times were less than 0.3%. These separation conditions were used to characterize the sizes and size distributions of Au NPs prepared by seed-assisted synthesis. In addition to observing the elution times of the Au NPs we also simultaneously characterized their size-dependent optical properties by spectral measurement of the eluting peaks by use of an on-line diode-array detector (DAD), i.e., monitoring of the stability of the Au NP products. By using this approach we found the presence of SDS was beneficial in stabilizing the synthesized Au NPs. We also found that the volume of Au metal ions used affected the sizes of the final products. SEC seems an efficient tool for characterizing the sizes of NPs fabricated by seed-assisted synthesis.  相似文献   

16.
A new method for the preparation of mesoporous ZnO/CdS@SiO2 core/shell nanostructure (CSN) has been developed. The mesoporous silica shells allow Ag+ to enter into the interior of the nanostructures to contact with ZnO/CdS core, accordingly causes the quenching of its band edge emission (475 nm) along with a simultaneous enhancement of red emission at around 595 nm. So, a novel visual fluorescence detection strategy for Ag+ ion is proposed based on a common core/shell Quantum dots nanostructure. Under optimal conditions, the enhanced fluorescence intensity at 595 nm increased linearly with the concentration of Ag+ ion ranging from 0.03 μM to 0.24 μM with a detection limit (3σ) of 3.3 nM.  相似文献   

17.
The anodic reaction in direct ethanol fuel cells (DEFCs), ethanol oxidation reaction (EOR) faces challenges, such as incomplete electrooxidation of ethanol and high cost of the most efficient electrocatalyst, Pt in acidic media at low temperature. In this study, core‐shell electrocatalysts with an Au core and Pt‐based shell (Au@Pt) are developed. The Au core size and Pt shell thickness play an important role in the EOR activity. The Au size of 2.8 nm and one layer of Pt provide the most optimized performance, having 6 times higher peak current density in contrast to commercial Pt/C. SnO2 as a support also enhances the EOR activity of Au@Pt by 1.73 times. Further modifying the Pt shell with Ru atoms achieve the highest EOR current density that is 15 and 2.5 times of Pt/C and Au@Pt. Our results suggest the importance of surface modification in rational design of advanced electrocatalysts.  相似文献   

18.
Gold nanoparticles (Au NPs) were prepared by the reduction of HAuCl4 acid incorporated into the polar core of poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymer micelles dissolved in toluene. The formation of Au NPs was controlled using three reducing agents with different strengths: hydrazine (HA), triethylsilane (TES), and potassium triethylborohydride (PTB). The formation of Au NPs was followed by transmission electron microscopy, UV–Vis spectroscopy, isothermal titration calorimetry (ITC), and dynamic light scattering (DLS). It was found that the strength of the reducing agent determined both the size and the rate of formation of the Au NPs. The average diameters of the Au NPs prepared by reduction with HA, TES, and PTB were 1.7, 2.6, and 8 nm, respectively. The reduction of Au(III) was rapid with HA and PTB. TES proved to be a mild reducing agent for the synthesis of Au NPs. DLS measurements demonstrated swelling of the PS-b-P2VP micelles due to the incorporation of HAuCl4 and the reducing agents. The original micellar structure rearranged during the reduction with PTB. ITC measurements revealed that some chemical reactions besides Au NPs formation also occurred in the course of the reduction process. The enthalpy of formation of Au NPs in PS-b-P2VP micelles reduced by HA was determined.  相似文献   

19.
Au/SnO2 core-shell structure nanoparticles were synthesized using the microwave hydrothermal method. The optical and morphological properties of these particles were examined and compared with those obtained by the conventional hydrothermal method. In microwave preparation, the peak position of the UV-visible plasmon absorption band of Au nanoparticles was red-shifted from 520 to 543 nm, due to the formation of an SnO2 shell. An SnO2 shell formation was complete within 5 min. The thickness of the SnO2 shell was 10-12 nm, and the primary particle size of SnO2 crystallites was 3-5 nm. For the core-shell particles prepared by a conventional hydrothermal method, the shell formed over the entire synthesis period and was not as crystalline as those produced, using the microwave method. The relationship between the morphological and spectroscopic properties and the crystallinity of the SnO2 shell are discussed.  相似文献   

20.
Monodispersed cobalt nanoparticles (NPs) with controllable size (8–14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe2O4 (M=Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe2O4 nanocomposites are prepared with tunable shell thickness (1–5 nm). The Co/MFe2O4 nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Compared to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号