首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluid phase diagrams (LLE and VLE) of methanol + n-alkane mixtures series (from C4 up to C16) were modelled using GC-PC-SAFT EOS (Tamouza et al., Fluid Phase Equilibria 222–223 (2004) 67–76) combined with a recent method for computing kij based on the London theory (NguyenHuynh et al., Industrial & Engineering Chemistry Research 47 (2008) 8847–8858). This latter method requires pure compound adjustable parameters: pseudo-ionization energies J that may be calculated by group contribution in the case of n-alkane series. Jalkane is calculated from group parameters JCH3JCH3 and JCH2JCH2.  相似文献   

2.
In this paper, solubility measurements of CO2 in pure pentaerythritol tetraoctanoate (PEC8) between 273 and 343 K are presented. The experiments were performed according to the static, synthetic method. The data are represented using the Peng–Robinson equation of state with the Huron–Vidal mixing rules and the UNIQUAC equation for the excess Gibbs Energy (gE) at infinite pressure. This system shows immiscibility in liquid phase, with lower critical end point (LCEP) at T = 268 ± 0.1 K and xCO2=0.98±0.001xCO2=0.98±0.001 and upper critical end point (UCEP) at the critical point of pure CO2.  相似文献   

3.
The all silica DDR membrane turns out to be well suited to separate water from organic solvents under pervaporation conditions, despite its hydrophobic character. All-silica zeolites are chemically and hydrothermally more stable than aluminum containing ones and are therefore preferred for membrane applications, including for dehydration, even though these type of membranes are hydrophobic. Permeation of water, ethanol and methanol through an all-silica DDR membrane has been measured at temperatures ranging from 344 to 398 K. The hydrophobic membrane shows high water fluxes (up to 20 kg m−2 h−1). The pure water permeance is insensitive to temperature and is well described assuming weak adsorption. Excellent performance in dewatering ethanol (N=2N=2 kg m−2 h−1and αw=1500αw=1500 at 373 K and xw=0.18xw=0.18) is observed and the membrane is also able to selectively remove water from methanol (N=5N=5 kg m−2 h−1 and αw=9αw=9). Water could also be removed from methanol/ethanol/water (αwater/EtOH=1500αwater/EtOH=1500, αMeOH/EtOH=70αMeOH/EtOH=70 at 373 K) mixtures, even at water feed concentrations below 1.5 mol%.  相似文献   

4.
5.
6.
7.
8.
9.
An Fe(II)-azido five-coordinate picket fence porphyrin complex with the formula [Na(2,2,2-crypt)][FeII(TpivPP)(N3)] · 3C6H5Cl (TpivPP = α,α,α,α-tetrakis(o-pivalamidophenyl)porphinato, known as a picket fence porphyrin, and 2,2,2-crypt is the cryptand-222) has been synthesized and characterized. The synthesis utilizes cryptand-222 to solubilize sodium azide in the preparation procedure. The UV–Vis and IR spectroscopic data are consistent with an azido ferrous porphyrinate. The X-ray structural analysis and the Mössbauer results indicate that the ion complex [FeII(TpivPP)(N3)] is high-spin and has the (dxy)2(dxz)1(dyz)1(dz2)1(dx2-y2)1(dxy)2(dxz)1(dyz)1(dz2)1(dx2-y2)1 ground state electronic configuration.  相似文献   

10.
11.
12.
New sets of data for the solubility of CO2 in the amine solvent system of 2-amino-2-methyl-1-propanol (1) + sulfolane (2) + water (3) were presented in this work. The measurements were done at temperatures of 313.2, 333.2, 353.2, and 373.2 K and CO2 partial pressures up to 193 kPa. The investigated compositions were as follows: (i) w1=16.5%w1=16.5%, w2=32.2%w2=32.2%; (ii) w1=8.2%w1=8.2%, w2=41.2%w2=41.2%; (iii) w1=22.3%w1=22.3%, w2=27.7%w2=27.7%; and (iv) w1=30.6%w1=30.6%, w2=19.4%w2=19.4%, where ww is the mass percent of the component. The present solubility data was correlated by a modified Kent–Eisenberg model. The model reasonably represents the present solubility data, not only over the considered conditions, but also for a wider range of temperatures, partial pressures, and compositions.  相似文献   

13.
14.
15.
This study investigates lipophilicity determination by chromatographic measurements using the polar embedded Ascentis RP-Amide stationary phase. As a new generation of amide-functionalized silica stationary phase, the Ascentis RP-Amide column is evaluated as a possible substitution to the n  -octanol/water partitioning system for lipophilicity measurements. For this evaluation, extrapolated retention factors, log kwlogkw, of a set of diverse compounds were determined using different methanol contents in the mobile phase. The use of n-octanol enriched mobile phase enhances the relationship between the slope (S  ) of the extrapolation lines and the extrapolated log kwlogkw (the intercept of the extrapolation), as well as the correlation between log P   values and the extrapolated log kwlogkw (1:1 correlation, r2 = 0.966). In addition, the use of isocratic retention factors, at 40% methanol in the mobile phase, provides a rapid tool for lipophilicity determination. The intermolecular interactions that contribute to the retention process in the Ascentis RP-Amide phase are characterized using the solvation parameter model of Abraham. The LSER system constants for the column are very similar to the LSER constants of the n-octanol/water extraction system. Tanaka radar plots are used for quick visual comparison of the system constants of the Ascentis RP-Amide column and the n-octanol/water extraction system. The results all indicate that the Ascentis RP-Amide stationary phase can provide reliable lipophilic data.  相似文献   

16.
17.
18.
19.
20.
A new type of nanofiltration membrane is reported based on coating a sulfonated poly(ether ether ketone) (SPEEK) layer on top of a polyethersulfone support. The membranes were characterized by dextran mixtures, salt solutions as well as negatively charged dyes. The SPEEK coated nanofiltration membranes showed molecular weight cutoff for dextran in the range of ultrafiltration, however, rather high rejection for sodium sulfate; retention for salts in the order of RNa2SO4>RNaCl>RMgCl2RNa2SO4>RNaCl>RMgCl2; in addition, the membranes showed a 97–100% retention to the organic dyes. The rejection rates were improved by an increase in the coating thickness and the polymer concentration in the coating solution at the penalty of permeability decrease. Furthermore, it was found that pore penetration of SPEEK into the support membrane effectively constrained the swelling rate of SPEEK and increased the retention. The Donnan–Steric Pore Model was used to describe the transport properties of the membrane. Modeling identified a very tortuous passage within the active separation layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号