首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new chelating resin is prepared by coupling Amberlite XAD-4 with metaphenylendiamine through an azo spacer, characterized (elemental analysis, IR and thermogravimetric analysis (TGA)) and studied for preconcentration Rh (III) using Inductive Couple Plasma Atomic Emission Spectroscopy (ICP-AES) for rhodium monitoring. The optimum pH value for sorption of the metal ion was 6.5 (recovery 100%). The sorption capacity was found 0.256 mmol g− 1 of resin for Rh (III). The method has a detection limit and limit of quantification of 0.05 and 0.08 μg mL− 1 at pH 6.5, respectively. The chelating resin can be reused for 10 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 100% was obtained for the metal ion with 1.5 M HCl as eluting agent. The equilibrium adsorption data of Rh (III) on modified resin were analyzed by Langmuir and Freundlich models. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (2.48 kJ/mol) indicates that the adsorption is an endothermic process. The method was applied for rhodium ions determination from tap water sample.  相似文献   

2.
Ayata S  Bozkurt SS  Ocakoglu K 《Talanta》2011,84(1):212-215
A new method based on microcolumn packed with ionic liquid-modified silica combined with flame atomic absorption spectrometry has been developed for the determination of lead in environmental samples. Several factors influencing the preconcentration efficiency of lead and its subsequent determination, such as pH of the sample, flow rate, mass of ionic liquid, and interfering effect, have been investigated. Lead could be quantitatively retained by ionic liquid-modified silica in the pH range of 5-7, and then eluted completely with 3.0 mL 1.0 mol L−1 HCl. The detection limit of this method for lead was 0.7 μg L−1 with preconcentration factor of 185, and the relative standard deviation (RSD) was 4.2% at 0.1 μg mL−1 Pb(II). This method has been applied for the determination of trace amount of lead in NIST standard reference material 2709 (San Joaquin Soil) and river water samples with satisfactory results.  相似文献   

3.
Ion-imprinted polymer (IIP) particles are prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as crosslinking agent and 2,2′-azo-bis-isobutyronitrile as initiator in the presence of Cu(II), a Cu(II)-4-(2-pyridylazo)resorcinol (Cu(II)-PAR) complex, and PAR only. A batch procedure is used for the determination of the characteristics of the Cu(II) solid phase extraction from the IIP produced. The results obtained show that the Cu(II)-PAR IIP has the greatest adsorption capacity (37.4 μmol g−1 of dry copolymer) among the IIPs investigated. The optimal pH value for the quantitative preconcentration is 7, and full desorption is achieved by 1 M HNO3. The selectivity coefficients (SCu/Me) for Me = Ni(II), Co(II) are 45.0 and 38.5, respectively. It is established that Cu(II)-PAR IIPs can be used repeatedly without a considerable adsorption capacity loss. The determination of Cu(II) ions in seawater shows that the interfering matrix does not influence the preconcentration and selectivity values of the Cu(II)-PAR IIPs. The detection and quantification limits are 0.001 μmol L−1 (3σ) and 0.003 μmol L−1 (6σ), respectively.  相似文献   

4.
A new time-based flow injection on-line solid phase extraction method for chromium(VI) and lead determination using flame atomic absorption spectrometry was developed. The use of hydrophobic poly-chlorotrifluoroethylene (PCTFE)-beads as absorbent in on-line preconcentration system was evaluated. Effective formation of ammonium pyrrolidine dithiocarbamate complexes and subsequently retention in PCTFE packed column, was achieved in pH range 1.0-1.6 and 1.5-3.2 for Cr(VI) and Pb(II) ions, respectively. The sorbed analyte was efficiently eluted with isobutyl-methyl-ketone for on-line FAAS determination. The proposed packing material exhibited excellent chemical and mechanical resistance, fast kinetics for adsorption of Cr(VI) and Pb(II) permitting the use of high sample flow rates at least up to 15 mL min−1 without loss of retention efficiency. For a preconcentration time of 90 s, the sample frequency was 30 h−1, the enhancement factor was 94 and 220, the detection limit was 0.4 and 1.2 μg L−1, while the precision (R.S.D.) was 1.8% (at 5 μg L−1) and 2.1% (at 30 μg L−1) for chromium(VI) and lead, respectively. The applicability and the accuracy of the developed method were estimated by the analysis spiked water samples and certified reference material NIST-CRM 1643d (Trace elements in water) and NIST-SRM 2109 (chromium(VI) speciation in water).  相似文献   

5.
A new class of solid‐phase extraction column prepared with grafted mercapto‐silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto‐silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb2+ could be preconcentrated quantitatively over a wide pH range (2.0–5.0). In the presence of foreign ions, such as Na+, K+, Ca2+, Zn2+, Mg2+, Cu2+, Fe2+, Cd2+, Cl? and NO3?, Pb2+ could be recovered successfully. The prepared solid‐phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb2+ in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb2+ in rice samples ranged from 87.3 to 105.2%.  相似文献   

6.
Two novel azocalix[4]pyrrole Amberlite XAD-2 polymeric chelating resins were synthesized by covalently linking diazotized Amberlite XAD-2 with calix[4]pyrrole macrocycles. The chelating resins were used for extraction, preconcentration and sequential separation of metal ions such as Cu(II), Zn(II) and Cd(II) by column chromatography prior to their determination by UV/vis spectrophotometry or flame atomic absorption spectrophotometry (FAAS) or inductively coupled plasma atomic emission spectroscopy (ICP-AES). Various parameters such as effect of pH on absorption, concentration of eluting agents, flow rate, total sorption capacity, exchange kinetics, preconcentration factor, distribution coefficient, breakthrough capacity and resin stability, were optimized for effective separation and preconcentration. The resin showed good ability for the separation of metal ions from binary and ternary mixture on the basis of pH of absorption and concentration of eluting agents. The newly synthesized resins showed good potential for trace enrichment of Cu(II), Zn(II) and Cd(II) metal ions, especially for Cu(II), as compared to the earlier reported resins. The synthesized resins were recycled at least 8-10 times without much affecting column sorption capacity. The presented method was successfully applied for determination of Cu(II), Zn(II) and Cd(II) in natural and ground water samples.  相似文献   

7.
8.
A new ion imprinted polymer (IIP) material was synthesized by co-polymerization of palladium-iodide-vinyl pyridinium/palladium-thiocyanate-vinyl pyridinium ion ternary ion-association complex taken in methanol/DMSO with 2-hydroxyethyl methacrylate (functional monomer) and ethylene glycol dimethacrylate (crosslinking monomer) in the presence of 2,2′-azobisisobutryonitrile (initiator). The imprinted anionic species [PdI4]2− or [Pd(SCN)4]2− were removed by leaching the dried and powdered materials particles for 18 h with 6 M HCl to obtain leached IIP particles. Non-imprinted/control polymers were also prepared in a similar fashion without the template. Various parameters that influence the percent extraction of palladium, viz. concentration of KI or KSCN, pH, weight of polymer particles, preconcentration and elution times, aqueous phase volume, etc., were systematically studied for both the systems, i.e., in batch as well as flow injection modes. As the on-line flow injection-flame atomic absorption spectrometric (FI-FAAS) allow offer higher enrichment factor, better precision and can analyze more samples for a given time, compared to batch method, this procedure is preferred for the analysis of palladium present in the street/fan blade dust samples collected from busy cities of India and the values obtained were compared with the standard ICPMS values.  相似文献   

9.
A sorbent material based on a newly synthesized hydrazone ligand, 4-hydroxy-N′-[(E)-(2-hydroxyphenyl)methylidene]benzohydrazide was prepared by immobilizing the ligand into a silica sol-gel matrix. The capability of the sorbent material for the extraction of seven biogenic amines (BAs), i.e., tryptamine (TRY), β-phenylethylamine (PEA), putrescine (PUT), cadaverine (CAD), histamine (HIS), tyramine (TYR), and spermidine (SPD) was studied. Under the adopted conditions, the sorbent showed good selectivity towards PUT, CAD, HIS and SPD (% extraction (%E) > 96) while %E for TYR, TRY and PEA were 82.0, 78.9 and 46.4%, respectively. The sorbent could be used up to six extraction cycles for SPD, CAD and PUT and was applied to the determination of food samples (“budu”, ketchup, orange juice, soy sauce) that were spiked with 20 mg L−1 of the BAs. The extracted analytes were derivatized with dansyl chloride before the HPLC determination. With the exception of HIS and TYR in “budu” sample, reasonable recoveries were found for the other analytes in all the tested food samples.  相似文献   

10.
In the present study, a cross-linked nano-sized spherical magnetic poly(styrene-divinylbenzene) is synthesized and used as an adsorbent for enrichment-determination of fenitrothion. A miniemulsion polymerization procedure was used to prepare the adsorbent. The magnetic adsorbent was characterized by FT-IR, SEM and TEM. The prepared magnetic adsorbent nanoparticles were mixed with magnetite nanoparticles for faster and more efficient magnetic precipitation. The reduced fenitrothion was coupled with 3-methyl-2-benzothiazolinone hydrazone and then the blue colored complex was extracted. The blue derivative of fenitrothion was eluted by a 1 mL aliquot of 1-propanol prior to spectrophotometry at 571 nm. Beer's law was obeyed in the range of 2–230 ng mL−1 of fenitrothion with relative standard deviation and recovery in the ranges of 0.9–5.1% and 97.2–100.0%, respectively. Selectivity of the method was evaluated, and the method was successfully applied to the determination of fenitrothion in various water, soil, urine and human plasma samples.  相似文献   

11.
A new chelating polymeric sorbent is developed using Merrifield chloromethylated resin anchored with calix[4]arene-o-vanillinsemicarbazone for simultaneous separation and solid phase extractive preconcentration of U(VI) and Th(IV). The “upper-rim” functionalized calix[4]arene-o-vanillinsemicarbazone was covalently linked to Merrifield resin and characterized by FT-IR and elemental analysis. The synthesized chelating polymeric sorbent shows superior binding affinity towards U(VI) and Th(IV) under selective pH conditions. Various physico-chemical parameters that influence the quantitative extraction of metal ions were optimized. The optimum pH range and flow rates for U(VI) and Th(IV) were 6.0-7.0 and 1.0-4.0 ml min−1 and 3.5-4.5 and 1.5-4.0 ml min−1, respectively. The total sorption capacity found for U(VI) and Th(IV) was 48734 and 41175 μg g−1, respectively. Interference studies carried out in the presence of diverse ions and electrolyte species showed quantitative analyte recovery (98-98.5%) with lower limits of detection, 6.14 and 4.29 μg l−1 and high preconcentration factors, 143 and 153 for U(VI) and Th(IV), respectively. The uptake and stripping of these metal ions on the resin were fast, indicating a better accessibility of the metal ions towards the chelating sites. The analytical applicability of the synthesized polymeric sorbent was tested with some synthetic mixtures for the separation of U(VI) and Th(IV) from each other and also from La(III), Cu(II) and Pb(II) by varying the pH and sequential acidic elution. The validity of the proposed method was checked by analyzing these metal ions in natural water samples, monazite sand and standard geological materials.  相似文献   

12.
A new synthesized modified mesoporous silica (MCM-41) using 5-nitro-2-furaldehyde (fural) was applied as an effective sorbent for the solid phase extraction of uranium(VI) and thorium(IV) ions from aqueous solution for the measurement by inductively coupled plasma optical emission spectrometry (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ions were investigated in batch method. Under optimal conditions, the analyte ions were sorbed by the sorbent at pH 5.5 and then eluted with 1.0 mL of 1.0 mol L−1 HNO3. The preconcentration factor was 100 for a 100 mL sample volume. The limits of detection (LOD) obtained for uranium(VI) and thorium(IV) were 0.3 μg L−1. The maximum sorption capacity of the modified MCM-41 was found to be 47 and 49 mg g−1 for uranium(VI) and thorium(IV), respectively. The sorbent exhibited good stability, reusability, high adsorption capacity and fast rate of equilibrium for sorption/desorption of uranium and thorium ions. The applicability of the synthesized sorbent was examined using CRM and real water samples.  相似文献   

13.
A novel UV-VIS spectrophotometric method was developed in this study by using solid phase extraction procedure for the simultaneous preconcentration, separation and determination of trace levels of Pb (II), Cd (II) and Zn (II) ions in various water samples by using Amberlite N,N-bis(salicylidene)cyclohexanediamine (SCHD) resin. This study presents the results of experimental procedures carried out like the adsorption of analytes to the resin, influences of some analytical parameters that effect the recovery such as pH, sample volume, sample flow rate, eluent type and concentration, eluent volume, eluent flow rate and the effects of alkaline metals, earth alkaline metals and some other transition metals. The analytes in the samples with the adjusted pH range of 4–7 were adsorbed on XAD-4-SCHD resin and eluted by using 1.0 mol L?1 nitric acid. The amounts of ions were determined by using UV-VIS spectrometer. The limits of detection were 0.03, 0.07 and 0.05 µg mL?1 for Pb (II), Cd (II) and Zn (II), respectively. The accuracy of the method was assured by the analysis of the certified standard water sample NW-TMDA-70.2 and the observed recoveries were above 93%. Different environmental water samples that contain trace amounts of Pb (II), Cd (II) and Zn (II) were analysed by using the method developed in this study. Same samples were also analysed by ICP-MS for comparison and almost the similar results were observed. The method developed in this study was successfully applied to the various environmental water samples to determine the trace levels of Pb (II), Cd (II) and Zn (II) ions.  相似文献   

14.
New ion-imprinted polymeric (IIP) materials were synthesized by copolymerization of 4-vinylpyridine (VP) and styrene as functional monomers and divinylbenzene as a cross-linking agent with chelating complexes of Pd(II) in the presence of 2,2-azobisisobutyronitrile as an initiator. The complexes of Pd(II) with ammonium pyrrolidinedithiocarbamate (APDC), N,N′-diethylthiourea (DET), and dimethylglyoxime (DMG) were used for this purpose. Chloroform, ethanol, and cyclohexanol were applied as porogens. The ion-imprinted polymers were tested in a flow mode as sorbents for solid-phase extraction of palladium from aqueous solutions. The conditions of Pd(II) separation on all polymers were optimized. The efficiencies of retention of Pd on different polymers in the presence of high excess of interfering ions were compared. The effect of the used porogen on the analytical performance of the prepared polymers was also investigated. The calculated sorbent capacities for Pd(II) were in the range from 9.25 mg g−1 to 13.3 mg g−1. The sorbent with Pd(II) imprinted as Pd-DMG-VP complex in chloroform was used for preconcentration of trace amounts of Pd. The detection limit for 100 mL of the sample was 5 μg L−1 using flame atomic absorption spectrometry (FAAS). The developed method was applied for the determination of Pd in water samples.  相似文献   

15.
Morales L  Toral MI  Alvarez MJ 《Talanta》2007,74(1):110-118
In this work, a characterization of reagent chromophere 5-(4-sulphophenylazo)-8-aminoquinoline [SPA] by IR and 1H RMN was carried out and a pKa value of 3.55 ± 0.03 was found as well. An 1:2 stoichiometry for the Cu(II)-SPA complex was determined at pH 9 by Job and molar ratio methods. A value of 1.4 × 1014 for the stability constant was also found. Based on the formation of this complex a new method for the copper determination in presence of gold and silver was developed by derivative spectrophotometry using a previous preconcentration on solid phase. In this method, the analytical measures were executed directly in the solid phase containing the complex. The Cu(II) reacts with the reagent chromophere SPA previously retained in the anionic exchange DEAE Sephadex A25. In this determination, the first derivative at 605 nm was used. The quantification range was between (3.2 ± 0.3 × 10−1) × 10−8 and (94.4 ± 0.9) × 10−8 mol L−1 (3.2 ± 0.3 × 10−1) × 10−8 , and (94.4 ± 0.9) × 10−8 mol L−1. The repeatability expressed as RSD was between 1.1 and 2.0%. The method was applied successfully for the copper determination in mineral residuals and natural water samples. The results were consistent with those provided by ICP-mass spectrometry.  相似文献   

16.
Recently, MoS2 with abundant electron density in its structure attracted more attention as an adsorbent for environmental remediation. However, hard manipulation of target solution owing to high dispersibility in aqueous media restricts its application as adsorbent. Preparation of Fe3O4/MoS2 nanohybrid can solve this problem. Also, this nanohybrid improves adsorption capacities of target ions. In this work, Fe3O4 nanoparticles, MoS2 nanosheets and hybrid of these two were synthesised and then characterised by X-ray diffraction, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, Fourier transforms infrared spectra, Brunauer–Emmett–Teller surface area and vibrating sample magnetometer. Subsequently, adsorption of Ag(I) and Pb(II) ions from aqueous solution by these three adsorbents was examined in detail and compared with each other while the adsorption conditions including the pH value, contact time, dosage of sorbent, elution conditions and interfering ions have been optimised. According to obtained results, prepared nanohybrid showed enhanced adsorption capacities for both ions relative to naked Fe3O4 and MoS2. The limits of detection for Ag(I) and Pb(II) were calculated as 0.49 µg L?1 and 2.7 µg L?1, respectively, and the relative standard deviation percentages (n = 5) for Ag(I) and Pb(II) were 2.8%, and 3.0%, respectively. Furthermore, the preconcentration factors were 300 and 75 for Ag(I) and Pb(II) ions, respectively. Moreover, kinetic studies showed that pseudo-second-order model can better describe target analytes adsorption properties by every three adsorbents. Regeneration of the adsorbents was performed with HCl/thiourea mixture.  相似文献   

17.
A solid phase extraction system for separation and preconcentration of trace amounts of Pb(II), Ni(II), Cd(II) and Cu(II) is proposed. The procedure is based on the adsorption of Pb2+, Ni2+, Cd2+ and Cu2+ ions on a column of 1-(2-pyridylazo)-2-naphthol (PAN) immobilised on surfactant-coated clinoptilolite prior to their determinations by Flame Atomic Absorption Spectroscopy (FAAS). The effective parameters including pH, sample volume, sample flow rate and eluent flow rate were also studied. The analytes collected on the column were eluted with 5 mL of 1 mol L?1 nitric acid. A concentration factor of 180 can be achieved by passing 900 mL of sample through the column. The detection limits (3 s) for Cd, Cu, Pb and Ni were found to be 0.28, 0.12, 0.44 and 0.46 µg L?1, respectively. The relative SDs at 10 µg L?1 (n = 10) for analytes were in the range of 1.2–1.4%. The method was applied to the determination of Pb, Ni, Cd and Cu in water samples.  相似文献   

18.
A pyrrole-functionalized monomer 2-[3-(1H-pyrrol-2-yl)phenyl]-1H-pyrrole (PyPhPy) was synthesized. The structure of monomer was investigated by Nuclear Magnetic Resonance (1H NMR) and Fourier Transform Infrared (FTIR) spectroscopy. The chemical polymerization of PyPhPy (CPyPhPy) was realized using FeCl3 as the oxidant. The electrochemical oxidative polymerization of polymer P(PyPhPy) and its copolymer with 3,4-ethylenedioxythiophene poly(2-[3-(1H-pyrrol-2-yl)phenyl]-1H-pyrrole-co-3,4-ethylenedioxythiophene) [P(PyPhPy-co-EDOT)] were achieved via potentiodynamic method by using NaClO4/LiClO4 as the supporting electrolyte in CH3CN. Characterizations of the resulting polymers were performed by cyclic voltammetry (CV), FTIR, scanning electron microscopy (SEM), UV-Visible spectrophotometry (UV-Vis) and thermogravimetry analyses (TGA). Electrical conductivity of CPyPhPy, P(PyPhPy), and P(PyPhPyco-EDOT) were measured by four-probe technique.  相似文献   

19.
Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L1 and 8.8 μg L1, respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples.  相似文献   

20.
The present study describes the adsorption characteristic of Cd(II) onto Nb2O5/Al2O3 mixed oxide dispersed on silica matrix. The characterization of the adsorbent has been carried out by infrared spectroscopy (IR), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), energy dispersive X-ray fluorescence analysis (EDXRF) and specific surface area (SBET). From batch experiments, adsorption kinetic of Cd(II) was described by a pseudo-second-order kinetic model. The Langmuir linear isotherm fitted to the experimental adsorption isotherm very well, and the maximum adsorption capacity was found to be 17.88 mg g−1. Using the effective material, a method for Cd(II) preconcentration at trace level was developed. The method was based on on-line adsorption of Cd(II) onto SiO2/Al2O3/Nb2O5 at pH 8.64, in which the quantitative desorption occurs with 1.0 mol L−1 hydrochloric acid towards FAAS detector. The experimental parameters related to the system were studied by means of multivariate analysis, using 24 full factorial design and Doehlert matrix. The effect of SO42−, Cu2+, Zn2+ and Ni2+ foreign ions showed no interference at 1:100 analyte:interferent proportion. Under the most favorable experimental conditions, the preconcentration system provided a preconcentration factor of 18.4 times, consumption index of 1.08 mL, sample throughput of 14 h−1, concentration efficiency of 4.35 min−1, linear range from 5.0 up to 35.0 μg L−1 and limits of detection and quantification of 0.19 and 0.65 μg L−1 respectively. The feasibility of the proposed method for Cd(II) determination was assessed by analysis of water samples, cigarette sample and certified reference materials TORT-2 (Lobster hepatopancreas) and DOLT-4 (Dogfish liver).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号