首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous work (J. Sep. Sci. 2009, 32, 2793-2803), we reported an interpretive optimisation approach to achieve maximal resolution in minimal analysis time, based on models describing the retention and peak shape as a function of mobile phase composition and flow rate. The method was applied to the separation of a group of basic drugs in a Chromolith column. In that work, we found that the retention factors were sensitive to the flow rate. The reason of the observed deviations in retention times is the increase in the column volume at the applied pressure, which decreases the linear velocity inside the column. This behaviour forced to include a correction term in the model that described the retention. We show here how the deviations in retention times can be evaluated, allowing retention models that do not include the flow rate as a variable, similar to isocratic chromatography at fixed flow rate. The logarithm of the deviations in the retention times with flow rate is shown to correlate with the solute polarity. This correlation is compared with similar correlations for the retention factor at fixed mobile phase composition and the extrapolated retention factor in water at fixed flow rate.  相似文献   

2.
Summary This paper reports the qualitative and quantitative effects of the column pressure drop on the retention of lipid components in a serially coupled capillary column SFC system. The contribution of the pressure drop consists of two components, the density effect and the flow effect. The magnitude of the flow effect,i. e. the change in retention which results from changes in the flow-rate when column pressures are changed, is determined by the difference in single column analyte k values. The effect will be positive compared with the uncorrected retention values when the column with largest k value is closest to the injector. With the columns in reversed order, the effect will be negative. The contribution from the density effect always resulted in larger coupled column k values and was in most instances of more significance than the flow effect component. Values calculated with and without pressure drop correction have been compared and it has been shown that for most of the eighteen model lipid compounds investigated, the deviations from the experimental retention factors were smaller when pressure drop corrections were made.  相似文献   

3.
Small columns packed with core-shell and sub-2 μm totally porous particles and monolith columns are very popular to conduct fast and efficient chromatographic separations. In order to carry out fast separations, short (2-5 cm) and narrow-bore (2-2.1 mm) columns are used to decrease the analyte retention volume. Beside the column efficiency, another significant issue is the extra-column band-spreading. The extra-column dispersion of a given LC system can dramatically decrease the performance of a small very efficient column. The aim of this study was to compare the extra-column peak variance contribution of several commercially available LC systems. The efficiency loss of three different type 5 cm long narrow bore, very efficient columns (monolith, sub-2 μm fully porous and sub-2 μm core-shell packing) as a function of extra-column peak variance, and as a function of flow rate and also kinetic plots (analysis time versus apparent column efficiency) are presented.  相似文献   

4.
The present study investigates how strong the kinetic plot method is influenced by the changes in plate height, retention factor and apparent column permeability that arise under conditions of very high pressure. More precisely, the study investigates how well a set of performance measurements conducted on a single short column can be used to predict the performance of a long sequence of coupled columns. This has been investigated for the two practically most relevant thermal conditions, i.e., that of a forced-air oven and that of a still-air oven. Measuring column performance data for acetophenone and benzene on a series of coupled 3.5 μm columns that could be operated up to 1000 bar, it was found that the kinetic plot method provides accurate predictions of time versus efficiency for the still-air oven systems, over the entire range of investigated pressures and column lengths (up to 60 cm), provided k′ and Kv0 are evaluated at the maximal pressure. For the forced-air oven which leads to worse performances than the still-air oven, the kinetic plot prediction is less accurate, partly because the thermal conditions (near-isothermal) tend to vary if the number of coupled columns increases. The fact that the thermal conditions of the column wall might vary with the column length is an additional complexity making very-high pressure separations less predictable and harder to interpret and model.  相似文献   

5.
Abstract

The effect of column dimension on resolution, sample capacity, retention time, efficiency and mobile phase composition were studied, using both constant flow rate and constant linear velocity. The four columns selected (A = 238 × 3.2 mm, B = 153 × 4.0 mm, C = 116 × 4.6 mm and D = 50 × 7 mm) had the same volume. K1 values were found to be constant, within experimental error, for all columns. At constant linear velocity, the retention time was found to be a linear function of column length, while at constant flow rate retention time was constant for all columns. The longest column (A) generated the largest N values while columns 3 and C gave the lowest H values, for dilute solutions, while they decreased with decreasing column length. On the other hand, it was observed that as the sample size increased, N generated by column A decreased more rapidly and eventually fell below the values generated by columns B and C. These two columns (B & C) can tolerate a larger sample size with less reduction in N value than the longest column. It is important to note that although there were minor differences in performance between columns B and C, there were significant differences between them (B and C) and the other two columns (A and D). Column A offered the highest sensitivity (narrower peaks) for dilute solutions, while columns B and C offered higher loadability. The volume of organic modifier in the mobile phase affected the retention equally in the four columns. It was also found that equal separation (a) was obtained for each column at constant flow rate and constant linear velocity, except with the latter the retention times were longer.  相似文献   

6.
A practical investigation of frictional heating effects in conventional C18 columns was undertaken, to investigate whether problems found for sub-2 μm columns were also present for those of particle size 3 μm and 5 μm and different internal diameter. The influence of a water bath, a still air heater, and a forced air heater on performance was investigated. Heating effects were substantial, with a decrease in k of almost 15% for toluene over the flow rate range ∼0.4–2.3 mL/min with a 15 cm × 0.46 cm ID column packed with 3 μm particles. Heating effects on retention increased with increasing solute k, with increase in the column ID, with decrease in the column particle size, and with decrease in the set column oven temperature. While the water bath minimised axial temperature gradients and thus its effect on k, radial temperature gradients were potentially serious with this system, especially at high mobile phase velocity, even with columns containing 5 μm particles. In contrast to the effects of axial temperature gradients in 4.6 mm columns, very little difference in Van Deemter plots was noted between the three different thermostats with 2 mm ID columns, even when 3 μm particles were used. However, the efficiency of 2 mm columns for peaks of low or moderate k (k < 4) can be compromised by the extra dead volume introduced by the heating systems, even with conventional HPLC systems with otherwise minimised extra column volume.  相似文献   

7.
Effects of extra-column volume on apparent separation parameters were studied in ultra-high pressure liquid chromatography with columns and inlet connection tubings of various internal diameters (id) using 50-mm long columns packed with 1.8-μm particles under isocratic conditions. The results showed that apparent retention factors were on average 5, 11, 18, and 41% lower than those corrected with extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns, respectively, when the extra-column volume (11.3 μL) was kept constant. Also, apparent pressures were 31, 16, 12, and 10% higher than those corrected with pressures from extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns at the respective optimum flow rate for a typical ultra-high pressure liquid chromatography system. The loss in apparent efficiency increased dramatically from 4.6- to 3.0- to 2.1- to 1.0-mm id columns, less significantly as retention factors increased. The column efficiency was significantly improved as the inlet tubing id was decreased for a given column. The results suggest that maximum ratio of extra-column volume to column void volume should be approximately 1:10 for column porosity more than 0.6 and a retention factor more than 5, where 80% or higher of theoretically predicted efficiency could be achieved.  相似文献   

8.
This work investigated the repeatability of column preparation for a reversed-phase C18 monolith, namely stearyl methacrylate-co-ethylene glycol dimethacrylate (SMA-EDMA). The columns were thermally polymerised using three commonly available heating devices (GC oven, hot air oven and water bath) and their chromatographic performance evaluated using micro-liquid chromatography for separation of five test compounds. Precision in terms of %RSD of retention times were 9.0, 6.5, and 12.5 using GC oven, hot air oven and water bath, respectively. Between-batch precision for the hot air oven (n = 3 days) was less than 10.4% for retention time. The SMA-EDMA monolith was applied to the separation of tocopherol homologues by capillary electrochromatography. Usually tocopherol homologues cannot be completely separated by conventional reversed-phase C8- or C18-packed bed or C18-silica based monolithic columns. Polymer monolith has been shown to give remarkable selectivity towards the tocopherols compared to the conventional microparticulate phase and silica based monolith. Successful separation of the tocopherol isomers was achieved on the SMA-EDMA monolith without any column modification.  相似文献   

9.
The tuning of selectivity by changing the flow rate has been investigated in HPLC: two columns with different retention characteristics were coupled in series via a T-piece and the relative retention of components chromatographed on the system were changed by varying the individual flow rates in the coupled columns. The flow rate alteration was performed by adding a second flow after the first column. The flow rate ratio necessary for optimum resolution can be easily calculated on the basis of the capacity factors measured on the individual columns. The performance of this method for adjusting selectivity has been demonstrated by using different column combinations to separate several mixtures containing chlorophenols, nitroaromatic compounds, and aromatic hydrocarbons.  相似文献   

10.
Multicapillary column (MCC) ion mobility spectrometers (IMS) are increasingly in demand for medical diagnosis, biological applications and process control. In a MCC-IMS, volatile compounds are differentiated by specific retention time and ion mobility when rapid preseparation techniques are applied, e.g. for the analysis of complex and humid samples. Therefore, high accuracy in the determination of both parameters is required for reliable identification of the signals. The retention time in the MCC is the subject of the present investigation because, for such columns, small deviations in temperature and flow velocity may cause significant changes in retention time. Therefore, a universal correction procedure would be a helpful tool to increase the accuracy of the data obtained from a gas-chromatographic preseparation. Although the effect of the carrier gas flow velocity and temperature on retention time is not linear, it could be demonstrated that a linear alignment can compensate for the changes in retention time due to common minor deviations of both the carrier gas flow velocity and the column temperature around the MCC-IMS standard operation conditions. Therefore, an effective linear alignment procedure for the correction of those deviations has been developed from the analyses of defined gas mixtures under various experimental conditions. This procedure was then applied to data sets generated from real breath analyses obtained in clinical studies using different instruments at different measuring sites for validation. The variation in the retention time of known signals, especially for compounds with higher retention times, was significantly improved. The alignment of the retention time—an indispensable procedure to achieve a more precise identification of analytes—using the proposed method reduces the random error caused by small accidental deviations in column temperature and flow velocity significantly.  相似文献   

11.
An experimental study was performed to investigate the effects of column parameters and gradient conditions on the separation of intact proteins using styrene-based monolithic columns. The effect of flow rate on peak width was investigated at constant gradient steepness by normalizing the gradient time for the column hold-up time. When operating the column at a temperature of 60 °C a small C-term effect was observed in a flow rate range of 1–4 μL/min. However, the C-term effect on peak width is not as strong as the decrease in peak width due to increasing flow rate. The peak capacity increased according to the square root of the column length. Decreasing the macropore size of the polymer monolith while maintaining the column length constant, resulted in an increase in peak capacity. A trade-off between peak capacity and total analysis time was made for 50, 100, and 250 mm long monolithic columns and a microparticulate column packed with 5 μm porous silica particles while operating at a flow rate of 2 μL/min. The peak capacity per unit time of the 50 mm long monolithic column with small pore size was superior when the total analysis time is below 120 min, yielding a maximum peak capacity of 380. For more demanding separations the 250 mm long monolith provided the highest peak capacity in the shortest possible time frame.  相似文献   

12.
Basic expressions are derived for both the retention time and the effective separation factor in serially coupled GC columns. The retention time is determined by two main parameters. The first is the fractional time spent by an unretarded solute in each column which, in turn, is determined by the relative column lengths and flow velocities through each column. The second parameter is the relative mass distribution coefficient of a particular solute in each column; a variable that can be adjusted by changing the relative temperatures of the columns. The expression for the effective separation factor relates the measured separation factor for the series combination to the separation factors on the individual columns, the fractional time spent by an unretarded peak in each column, as well as the relative values of the mass distribution coefficients of a particular solute on the different columns.  相似文献   

13.
This paper describes the preparation of new dress-up columns featuring reproducibly removable and replaceable chiral stationary phases. After synthesizing perfluroalkylated quinine and quinidine derivatives as chiral stationary phase compounds (F-CSPs), we adsorbed them reversibly onto a fluorous LC column through pumping of their solutions. Using this dress-up chiral column and fluorophobic elution of aqueous ammonium formate/MeOH mixtures, we could enantioseparate four racemic N-acetyl amino acids, dichlorprop, and sixteen fluorescent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC)-derivatized amino acids. Dressing and undressing of the coated F-CSPs could be controlled by varying the fluorophilicity and fluorophobicity of the eluent. The relative standard deviations of the retention times, the retention factors, the number of theoretical plates, the enantioseparation factors, and the resolutions of each of four preparations of such dress-up columns were all less than or equal to 5.26% (from 20 repeated analyses); the reproducibilities from four different preparations were all less than or equal to 10.6%. These columns also facilitated highly sensitive and selective analyses of AQC-amino acids when detected using LC–MS/MS.  相似文献   

14.
In order to assess the effect of silica gel structure on retention in hydrophilic interaction chromatography, a test system was developed which used quaternary ammonium ions as probes with tetramethylammonium acetate (TMAA) as the counter-ion competing against the interaction of the test probes with ionised silanols in the stationary phase. Four silica gel columns and a silica hydride column were examined. Retention times were obtained for the test probes at 20, 40, 60, 80 and 90 % acetonitrile (ACN) with all the mobile phase mixtures containing 10-mM TMAA buffer at pH 6.0. All phases gave “U”-shaped plots for log k against percentage of ACN with the steepest rise in retention occurring between 80 and 90 % ACN. Benzyltrimethylammonium, the smallest quaternary ammonium ion, was the most strongly retained probe at 90 % ACN and was most retained on a high surface area 60 Å Kromasil column and least retained on a 300 Å ACE silica gel column. The ionic strength of the mobile phase was varied at 80 and 90 % ACN and plots of log k against the inverse of buffer strength followed by fitting of second-order polynomial curves allowed an assessment of the contribution from HILIC to the mixed HILIC/ion-exchange retention mechanism. Toluene and pentylbenzene were used to assess the decrease in accessible pore volume due to water absorption in HILIC mode.  相似文献   

15.
Two‐dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On‐line coupling of a reversed‐phase column with an aqueous normal‐phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on‐line two‐dimensional liquid chromatography needs a capillary or micro‐bore column providing low‐volume effluent fractions transferred to a short efficient second‐dimension column for separation at a high mobile phase flow rate. We prepared polymethacrylate zwitterionic monolithic micro‐columns in fused silica capillaries with structurally different dimethacrylate cross‐linkers. The columns provide dual retention mechanism (hydrophilic interaction and reversed‐phase). Setting the mobile phase composition allows adjusting the separation selectivity for various polar substance classes. Coupling on‐line an organic polymer monolithic capillary column in the first dimension with a short silica‐based monolithic column in the second dimension provides two‐dimensional liquid chromatography systems with high peak capacities. The silica monolithic C18 columns provide higher separation efficiency than the particle‐packed columns at the flow rates as high as 5 mL/min used in the second dimension. Decreasing the diameter of the silica monolithic columns allows using a higher flow rate at the maximum operation pressure and lower fraction volumes transferred from the first, hydrophilic interaction dimension, into the second, reversed‐phase mode, avoiding the mobile phase compatibility issues, improving the resolution, increasing the peak capacity, and the peak production rate.  相似文献   

16.
The influence of pressure drop on retention, selectivity, plate height and resolution was investigated systematically in packed supercritical fluid chromatography (SFC) using pure carbon dioxide as the mobile phase. Numerical methods developed previously which enabled the prediction of pressure gradients, diffusivities, capacity factors, plate heights and resolutions along the length of the column were used for the model calculations. The effects of inlet pressure and supercritical fluid flow rate on selectivity and resolution are studied. In packed column SFC with pure carbon dioxide as the mobile phase, the pressure drop can have a significant effect on resolution. The flow rate is shown to have a larger effect than generally realized. The calculated data are shown to be in good agreement with the experimental results. Finally, the variation of the chromatographic parameters along a 5.5 meter long model SFC column is illustrated. The possibilities and limitations of using long packed columns in SFC are discussed. It is demonstrated that long columns with large plate numbers do not necessarily yield better separations.  相似文献   

17.
Two kinds of commercially available, microparticulate silica columns have been studied for their efficiency and reproducibility in gel permeation chromatography measurements. Results are provided for column plate height measurements, dispersity, and specific resolution as a function of flow rate. The influence of injection volume and slice width on these measurements is also presented. Reproducibility studies on polystyrene and styrene-n-butyl methacrylate copolymer are reported.  相似文献   

18.
Polymeric polyimide capillary tubing, both uncoated and coated with stationary phases of two polarities, is explored for use as capillary columns for gas chromatography (GC). These glass-free polyimide columns are flexible and their small winding diameter of less than a cm around a solid support makes them compatible for potential use in portable GC instruments. Polyimide columns with dimensions of 0.32 mm i.d. × 3 m are cleaned, annealed at 300°C, and coated using the static method with phenylmethylsilicone (PMS). Separations of volatile organics are investigated isothermally on duplicate sets of polyimide columns by GC with a flame ionization detector using split injection. Unlike the uncoated ones, the coated polyimide columns successfully separate Grob test mix classes of alkanes, amines, and fatty acid methyl esters. The relative standard deviations for retention time and peak area are 0.5 and 2.5 , respectively. With the 3 m PMS-coated column connected to a retention gap to permit operation at its optimum flow rate of 30 cm/s, a plate count of 3200 or plate height of 1 mm is possible. Lack of retention and tailing peaks are evident for the polyimide polymer capillary columns as compared to that of a 3 m commercial cross-linked PMS fused silica capillary. However, headspace analyses of an aromatic hydrocarbon mix and a Clearcoat automotive paint sample are viable applications on the PMS polyimide polymer column.  相似文献   

19.
The impact of a realistic error in the column hold-up time on the determination of the adsorption isotherm model was systematically investigated. Frontal analysis and the inverse method were used for the accurate determination of the adsorption isotherm. The true retention times of the breakthrough curves were used with a known hold-up time as reference. The adsorption isotherms were calculated using the same procedure that is used for real experimental adsorption isotherms, where the true hold-up time is unknown. The raw data were analyzed with calculations of adsorption energy distributions (AEDs), Scatchard plots, fitting to different rival adsorption models and finally their ability to predict true profiles. The results show that for a true Langmuir and bi-Langmuir model with an underestimated hold-up time the error may lead to a more heterogeneous model and for overestimated cases false adsorption processes like multi-layer adsorption or solute-solute interaction are assumed. The Scatchard plots for data obtained using a Langmuir adsorption isotherm are nonlinear and the AEDs show clear deviations from Langmuir behavior already at small deviations from the true hold-up time at a moderate surface coverage. The inverse method confirms the result that was obtained from the frontal analysis procedure.  相似文献   

20.
The technique of controlling chromatographic selectivity by the adjustment of column temperatures in systems of series-coupled columns is investigated by means of a general model incorporating the effects of temperature and mobile phase compressibility. In a previous article the performance of series-coupled columns was investigated under conditions of constant overall pressure drop. The present paper, on the other hand, considers systems in which a constant mass flow rate is maintained at all temperatures. The expressions derived for the effective partition coefficient and the retention time are compared with those of the previous paper. The numerical results for two-column systems exhibit the same major trends as those for constant pressure drop. It is shown that the effective partition coefficient is slightly dependent on the mass flow rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号