首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agarose gels were fabricated by water-in-oil emulsification with the addition of CaCO3 granules at 8–16 wt%. Thus agarose beads of different superporosities were produced after dissolving the solid porogen. The superporous agarose (SA) and homogeneous agarose gels were double cross-linked and modified with diethylaminoethyl chloride to produce anion exchangers. We have proposed to use a superporous replica (porous titania microspheres) to examine the superporous structure and pore size distribution of the soft gel. The replica was prepared with the agarose gel entrapping CaCO3 granules by a sol–gel-templating method. It was found that the superpores created by CaCO3 granules were uniformly distributed and ranged from 0.95 μm to 1.33 μm. The physical properties of the gels were significantly affected by the porogen content. Importantly, by increasing the solid porogen to 12 wt%, the bed permeability and effective porosity increased about 48% and 33%, respectively. Further increase in the porogen to 16 wt% led to a decrease of the mechanical strength. With increasing superpores in the beads, the dynamic adsorption capacity of the packed columns increased obviously at 305–916 cm/h. Besides, the column efficiency changed less with increasing flow velocity up to 1200 cm/h. It was concluded that the use of 12 wt% CaCO3 granules in agarose solution was beneficial for the fabrication of the SA gel with good mechanical stability and promising performance for protein chromatography.  相似文献   

2.
A central composite rotatable design (CCRD) of response surface methodology was used to analyze pervaporation performance of homogeneous poly(vinyl alcohol) (PVA) membranes. A regression model was developed for the pervaporation flux and selectivity as a function of the operating conditions: temperature, concentration and flow-rate. Dehydration experiments were performed on two different alcohol–water systems: isopropanol–water (IPA–water) and ethanol–water (Et–water) mixtures around their azeotropic concentrations. Based on preliminary experiments and CCRD design, the ranges of values of the operating conditions were selected: temperature 33–67 °C, feed flow-rate 46–114 L/h, and concentration 83–92 wt% for IPA and 93–98 wt% for Et in feed mixtures. A total of 20 pervaporation experiments were conducted for each alcohol–water system. Judged by the lack-of-fit criterion, the analysis of variance (ANOVA) showed the regression model to be adequate. From the regression analysis, the flux and selectivity were expressed with quadratic equations of temperature, feed concentration and flow-rate. The predicted flux and selectivity from the regression model were presented in 3D surface plots. For both alcohol–water systems, quadratic terms of temperature and feed alcohol concentration showed significant (p < 0.0001) influence on the flux and selectivity. A strong interaction effect of temperature and concentration was observed on the selectivity for the Et–water system. However, the interaction of flow-rate with temperature or concentration was found to be less significant. In order to optimize the pervaporation flux and selectivity of azeotropic alcohol–water mixtures, the desirability function approach was applied to analyze the regression model equations by commercial software. For the azeotropic IPA–water mixture (87.5 wt% IPA), the optimized dehydration variables were found to be 50.5 °C and 93.7 L/h for temperature and flow-rate, respectively. For the azeotropic Et–water mixture (95.5 wt% Et), the optimized temperature and flow-rate were found to be 57 °C and 89.2 L/h, respectively. Compared with experiments performed at optimized temperature and flow-rate, the predicted flux and selectivity of the azeotropic mixtures showed errors to be within 3–6%.  相似文献   

3.
A novel sulfopropyl gigaporous polystyrene (SP-GP) microsphere enhancing the separation of poly(ethylene glycol)–protein (PEGylated protein) was first presented. The SP-GP microspheres were successfully prepared by introducing sulfopropyl groups into agarose-coated gigaporous polystyrene microspheres and used as chromatography media. Compared with a commercial medium, SP-GP microspheres exhibited improved column efficiency and reduced backpressure with increasing flow velocity, which could ensure its use in high-speed chromatography. Furthermore, a higher protein recovery and purity of the PEGylated protein could be obtained, even when SP-GP was applied at a flow velocity of 1224 cm h−1. Additionally, the dynamic binding capacity (DBC) of SP-GP was significantly improved, which was higher than 10 mg mL−1 medium even at a flow velocity of 306 cm h−1. Further investigation using a laser scanning confocal microscope (LSCM) demonstrated that the static adsorption equilibrium of the PEGylated protein on SP-GP could be completed in 5 min, whereas a much longer period (ca. 60 min) was required for the commercial medium, indicating that the mass transfer of SP-GP was much faster with the gigaporous structure. All of these results strongly support that our developed SP-GP could serve as a promising cation exchange chromatography resin for high-speed separation, especially for biomolecules of high molecular weight.  相似文献   

4.
Dissolved organic matter in aquatic systems is of variable structure and composition. Asymmetrical flow field-flow fractionation coupled to UV/vis diode array and fluorescence detectors (AF4–DAD–EEM) was used to assess the size and optical properties of dissolved organic matter. The results were analyzed using parallel factor analysis (PARAFAC) and statistical fractogram deconvolution to correlate fluorescing components with molecular weight fractions. This coupling, which is shown for the first time in this work, is a powerful method capable of revealing novel information about the size properties of PARAFAC components. Tyrosine/polyphenol-like fluorescence (peak B) was significantly correlated (p < 0.05) with the smallest size group (relative molecular weight = 310 ± 10 Da), microbial humic-like and terrestrial visible humic-like fluorescence (peaks M, C, A) with the intermediate size group (1600 ± 150 Da), and terrestrial fulvic-like and tryptophan/polyphenol-like fluorescence (peaks A and T) with the largest size group (4300 ± 660 Da).  相似文献   

5.
Macroporous cellulose beads (MCB) used as anion exchangers were successfully prepared from cellulose solution in ionic liquid by double emulsification followed by cross-linking and modification with diethylaminoethyl. The pore structure and properties of the MCB were investigated and the results were compared with homogeneous cellulose beads (HCB). The MCB in size of about 71 μm is characterized by two sets of pores, i.e., diffusion pores (10–20 nm) and macropores (800–2000 nm), determined by mercury porosimeter. In addition, the bed permeability and effective porosity for BSA of MCB-packed column are 58% and 25% higher than those of HCB-packed column, respectively. The adsorption properties of MCB were evaluated, and compared with HCB and commercial absorbent (Sepharose 6 Fast Flow, CSFF). It is found that the pore diffusivity of BSA in MCB is over 7.9 times higher than HCB, and 6.7 times higher than CSFF, respectively. While the equilibrium adsorption capacity (qm) of BSA on MCB is obviously lower than that on HCB and CSFF, the dynamic binding capacity (DBC) on MCB at 10% breakthrough reaches 47.7 mg/mL, higher than HCB (40.3 mg/mL) and CSFF (46.2 mg/mL) at flow rate of 360 cm/h. In addition, the MCB-packed column showed better column efficiency over the HCB packed one. Therefore, we demonstrated that the MCB possessed more advantages than other ones, like HCB and CSFF, and was expected as an ideal material for fast chromatography.  相似文献   

6.
Novel organic–inorganic hybrid membranes were prepared through sol–gel reaction of poly(vinyl alcohol) (PVA) with γ-aminopropyl-triethoxysilane (APTEOS) for pervaporation (PV) separation of ethanol/water mixtures. The membranes were characterized by FTIR, EDX, WXRD and PALS. The amorphous region of the hybrid membranes increased with increasing APTEOS content, and both the free volume and the hydrophilicity of the hybrid membranes increased when APTEOS content was less than 5 wt%. The swelling degree of the hybrid membranes has been restrained in an aqueous solution owing to the formation of hydrogen and covalent bonds in the membrane matrix. Permeation flux increased remarkably with APTEOS content increasing, and water permselectivity increased at the same time, the trade-off between the permeation flux and water permselectivity of the hybrid membranes was broken. The sorption selectivity increased with increasing temperature, and decreased with increasing water content. In addition, the diffusion selectivity and diffusion coefficient of the permeants through the hybrid membranes were investigated. The hybrid membrane containing 5 wt% APTEOS has highest separation factor of 536.7 at 50 °C and permeation flux of 0.0355 kg m−2 h−1 in PV separation of 5 wt% water in the feed.  相似文献   

7.
A high-speed thermoresponsive medium was developed by grafting poly(N-isopropylacrylamide-co-butyl methacrylate) (P(NIPAM-co-BMA)) brushes onto gigaporous polystyrene (PS) microspheres via surface-initiated atom transfer radical polymerization (ATRP) technique, which has strong mechanical strength, good chemical stability and high mass transfer rate for biomacromolecules. The gigaporous structure, surface chemical composition, static protein adsorption, and thermoresponsive chromatographic properties of prepared medium (PS–P(NIPAM-co-BMA)) were characterized in detail. Results showed that the PS microspheres were successfully grafted with P(NIPAM-co-BMA) brushes and that the gigaporous structure was robustly maintained. After grafting, the nonspecific adsorption of proteins on PS microspheres was greatly reduced. A column packed with PS–P(NIPAM-co-BMA) exhibited low backpressure and significant thermo-responsibility. By simply changing the column temperature, it was able to separate three model proteins at the mobile phase velocity up to 2167 cm h−1. In conclusion, the thermoresponsive polymer brushes grafted gigaporous PS microspheres prepared by ATRP are very promising in ‘green’ high-speed preparative protein chromatography.  相似文献   

8.
Aqueous 5 wt% LiOH/12 wt% urea solution pre-cooled to −12 °C has a more powerful ability to dissolve cellulose compared to that of NaOH/urea and NaOH/thiourea solution system. The influences of the cellulose concentration and coagulation temperature on the structure, pore size and mechanical properties of the cellulose films prepared from LiOH/urea system were investigated. The cellulose films exhibited good mechanical properties either at wet or dry state and their pore size and water permeability at wet state can be controlled by changing the cellulose concentration or coagulation temperature. With a decrease of the coagulation temperature, the mechanical properties and optical transmittance of the cellulose films enhanced, as a result of the formation of relative smaller pore size and denser structures. This work provided a promising way to prepare cellulose films with different pore sizes at wet state and good physical properties at dry state.  相似文献   

9.
Cardo polyetherketone (PEK-C) composite membranes were prepared by casting glutaraldehyde (GA) cross-linked sulfonated cardo polyetherketone (SPEK-C) or silicotungstic acid (STA) filled SPEK-C and poly(vinyl alcohol) (PVA) blending onto a PEK-C substrate. The compatibility between the active layer and PEK-C substrate is improved by immersing the PEK-C substrate in a GA cross-linked sodium alginate (NaAlg) solution and using water–dimethyl sulfoxide (DMSO) as a co-solvent for preparing the STA-PVA-SPEK-C/GA active layer. The pervaporation (PV) dehydration of acetic acid shows that permeation flux decreased and separation factor increased with increasing GA content in the homogeneous membranes. The permeation flux achieved a minimum and the separation factor a maximum when the GA content increased to a certain amount. Thereafter the permeation flux increased and the separation factor decreased with further increasing the GA content. The PV performance of the composite membranes is superior to that of the homogeneous membranes when the feed water content is below 25 wt%. The permeation activation energy of the composite membranes is lower than that of the homogeneous membranes in the PV dehydration of 10 wt% water in acetic acid. The STA-PVA-SPEK-C-GA/PEK-C composite membrane using water–DMSO as co-solvent has an excellent separation performance with a flux of 592 g m−2 h−1 and a separation factor of 91.2 at a feed water content of 10 wt% at 50 °C.  相似文献   

10.
A series of biodegradable cellulose/chitin blend membranes were successfully prepared from blend solution of cellulose and chitin in 9.5 wt% NaOH/4.5 wt% thiourea aqueous solution coagulating with 5.0 wt% (NH4)2SO4. The influence of chitin content on the morphology and structure of the membranes was studied by scanning electron microscopy, environmental scanning electron microscopy and wide-angle X-ray diffractometry, as well as Fourier transform infrared spectroscopy. Using double-cell method and solution depletion method, the permeability and partition coefficients of three model drugs (ceftazidine, cefazolin sodium, and thiourea) were determined in phosphate buffer solution to clarify the diffusion mechanism governing transport of solutes in these membranes. Diffusion coefficients were calculated from the permeability and partition coefficients in terms of Fick's law. The effects of the chitin content, pH, ionic strength, molecular size and temperature on the drug diffusion were also studied. Our results revealed that all of the membranes had a porous-like structure. The introduction of chitin exhibited great influence on the morphology and crystal structure of the blend membranes, resulting in a significant different permeability. For the first time, a dual diffusion mechanism with some hindrance of molecular diffusion via polymer obstruction was employed to explain the transport of drugs in the membranes.  相似文献   

11.
This paper presents a fully automated method for determining ten primary amines in wastewater at ng/L levels. The method is based on simultaneous derivatization with pentafluorobenzaldehyde (PFBAY) and headspace solid-phase microextraction (HS-SPME) followed by gas chromatography coupled to ion trap tandem mass spectrometry (GC–IT-MS–MS). The influence of main factors on the efficiency of derivatization and of HS-SPME is described in detail and optimized by a central composite design. For all species, the highest enrichment factors were achieved using a 85 μm polyacrylate (PA) fiber exposed in the headspace of stirred water samples (750 rpm) at pH 12, containing 360 g/L of NaCl, at 40 °C for 15 min. Under optimized conditions, the proposed method achieved detection limits ranging from 10 to 100 ng/L (except for cyclohexylamine). The optimized method was then used to determine the presence of primary amines in various types of wastewater samples, such as influent and effluent wastewater from municipal and industrial wastewater treatment plants (WWTPs) and a potable water treatment plant. Although the analysis of these samples revealed the presence of up to 1500 μg/L of certain primary amines in influent industrial wastewater, the concentration of these compounds in the effluent and in municipal and potable water was substantially lower, at low μg/L levels. The new derivatization–HS-SPME–GC–IT-MS–MS method is suitable for the fast, reliable and inexpensive determination of primary amines in wastewater in an automated procedure.  相似文献   

12.
Three primary nerve agent degradation products (ethyl-, isopropyl- and pinacolyl methylphosphonic acid) have been determined in water samples using on-line solid phase extraction-liquid chromatography and mass spectrometry (SPE-LC–MS) with electrospray ionisation. Porous graphitic carbon was employed for analyte enrichment followed by hydrophilic interaction chromatography. Diethylphosphate was applied as internal standard for quantitative determination of the alkyl methylphosphonic acids (AMPAs). By treating the samples with strong cation-exhange columns on Ba, Ag and H form, the major inorganic anions in water were removed by precipitation prior to the SPE-LC–MS determination. The AMPAs could be determined in tap water with limits of detection of 0.01–0.07 μg L−1 with the [M−H] ions extracted at an accuracy of ±5 mDa. The within and between assay precisions at analyte concentrations of 5 μg L−1 were 2–3%, and 5–9% relative standard deviation, respectively. The developed method was employed for determination of the AMPAs in three natural waters and a simulated waste water sample, spiked at 5 μg L−1. Recoveries of ethyl-, isopropyl- and pinacolyl methylphosphonic acid were 80–91%, 92–103% and 99–106%, respectively, proving the applicability of the technique for natural waters of various origins.  相似文献   

13.
Present study developed a new method for the sensitive determination of pyrethroid insecticides with solid phase extraction in combination with high performance liquid chromatography and UV detector. SiO2 microspheres, a new SiO2 based material, was investigated for the enrichment ability and applicability as the solid phase extraction sorbent. Four pyrethroid pesticides such as fenpropathrin, cyhalothrin, fenvalevate and biphenthrin were used as the target analytes. Parameters that maybe influence the extraction efficiency such as the eluent type and its volume, sample flow rate, sample pH, and the sample volume were optimized in detail, and the optimal conditions were as followed: sample volume, 100 mL; concentration of methanol, 30%; acetone volume, 5 mL; sample flow rate, 4.2 mL min−1; sample pH, 7. The experimental results indicated that there was good linearity in the concentration range of 0.1–50 μg L−1 except biphenthrin in the range of 0.05–25 μg L−1. The detection limits for fenpropathrin, cyhalothrin, fenvalevate and biphenthrin were in the range of 0.02–0.08 μg L−1. The intra-day and day to day precisions (RSDs, n = 6) were in the ranges of 2.6–4.4% and 5.3–7.2%, respectively. The method was validated with five real environmental water samples, and all these results proved that proposed method could be used as a good alternative for the routine analysis for such pollutants in environmental samples.  相似文献   

14.
An analytical method, solid-phase extraction combined with dispersive liquid–liquid microextration (SPE–DLLME), was established to determine polybrominated diphenyl ethers (PBDEs) in water and plant samples. After concentration and purification of the samples in LC-C18 column, 1.0-mL elution sample containing 22.0 μL 1,1,2,2-tetrachloroethane was injected rapidly into the 5.0-mL pure water. After extraction and centrifuging, the sedimented phase was injected rapidly into gas chromatography with electron-capture detection (GC–ECD). For water samples, enrichment factors (EFs) are in the range of 6838–9405 under the optimum conditions. The calibration curves are linear in the range of 0.1–100 ng L−1 (BDEs 28, 47) and 0.5–500 ng L−1 (BDEs 100, 99, 85, 154, 153). The relative standard deviations (RSDs) and the limits of detection (LODs) are in the range of 4.2–7.9% (n = 5) and 0.03–0.15 ng L−1, respectively. For plant samples, RSDs and LODs are in the range of 5.9–11.3% and 0.04–0.16 μg kg−1, respectively. The relative recoveries of well, river, sea, leachate, and clover samples, spiked with different levels of PBDEs, are 66.8–94.1%, 72.2–100.5%, 74.5–110.4%, 62.1–105.1%, 66.1–91.7%, 62.4–88.9%, and 64.5–83.2%, respectively. The results show that SPE–DLLME is a suitable method for the determination of PBDEs in water and plant samples.  相似文献   

15.
The quantitative characterization of pore structure of Sartobind Q, a strongly basic membrane anion exchanger that is formed by cross-linked cellulose support and a hydrogel layer on its pore surface, was made combining the results obtained by several experimental techniques: liquid impregnation, batch size-exclusion, inverse size-exclusion chromatography, and permeability. Mercury intrusion and nitrogen sorption porosimetry were carried out for a dry cellulose support membrane in order to get additional information for building a model of the bimodal pore structure. The model incorporated the distribution of the total pore volume between transport and gel-layer pores and the partitioning of solutes of different molecular weights was expressed through the cylindrical pore model for the transport pores and random plane model for the gel layer. The effect of composition of liquid phase on the pore structure was investigated in redistilled water, phosphate and Tris–HCl buffers containing up to 1 M NaCl. Evident differences in the bimodal pore structure were observed here when both the specific volume and size of the hydrogel layer pores significantly decreased with the ionic strength of liquid phase.  相似文献   

16.
In this paper, we report on the preparation of a microbore-scale (1 mm i.d.) anion-exchange monolithic column suitable not only for analytical purposes but also for potentially preparative applications. In order to meet the conflicting requirements of high permeability and good mechanical strength, the following two-step procedure was applied. First, an epoxy-containing monolith was synthesized by in situ copolymerization of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) within the confines of a silicosteel tubing of 1.02 mm i.d. and 1/16″ o.d. in the presence of a ternary porogenic mixture of 1-propanol, 1,4-butanediol, and water. The monolithic matrix was subsequently converted into weak anion-exchanger via the ring-opening reaction of epoxy group with diethyl amine. The dynamic binding capacity was 21.4 mg mL−1 for bovine serum albumin (BSA) at 10% breakthrough. The morphology and porous structure of this monolith were assessed by scanning electron microscope (SEM) and inverse size exclusion chromatography (ISEC). To optimize the separation efficiency, the effects of various chromatographic parameters upon the separation of DNA fragments were investigated. The resulting monolithic anion exchanger demonstrated good potential for the separation of both single- and double-stranded DNA molecules using a gradient elution with NaCl in Tris–HCl buffer (20 mM). Oligodeoxythymidylic acids (dT12–dT18) were successfully resolved at pH 8, while the fragments of 20 bp DNA ladder, 100 bp DNA ladder, and pBR322-HaeIII digest were efficiently separated at pH 9.  相似文献   

17.
Sulfonated poly(ether ether ketone) (SPEEK)–silica membranes doped with phosphotungstic acid (PWA) are presented. The silica is generated in situ via the water free sol–gel process of polyethoxysiloxane (PEOS), a liquid hyperbranched inorganic polymer of low viscosity. At 100 °C and 90% RH the membrane prepared with PEOS (silica content = 20 wt%) shows two times higher conductivity than the pure SPEEK. The addition of small amounts of PWA (2 wt% of the total solid content) introduced in the early stage of membrane preparation brings to a further increase in conductivity (more than three times the pure SPEEK). During membrane formation PWA and the sulfonic acid groups of SPEEK act as catalysts in the conversion of PEOS in silica. Once the membranes are formed, PWA is incorporated in the silica network and acts as proton conductivity enhancer. The correlation between morphology and proton conductivity allows establishing the optimal doping level and preparation procedure. The morphology is studied by transmission electron microscopy (TEM) while the proton conductivity is measured by impedance spectroscopy (IS). The direct methanol fuel cell performance is also investigated.  相似文献   

18.
In this work, a new stir cake sorptive extraction (SCSE) using polymeric ionic liquid monolith as sorbent was prepared. The sorbent was obtained by in situ copolymerization of an ionic liquid, 1-allyl-3-methylimidazolium bis[(trifluoro methyl)sulfonyl]imide (AMII) and divinylbenzene (DB) in the presence of N,N-dimethylformamide. The influence of the content of ionic liquid and the porogen in the polymerization mixture on extraction performance was studied thoroughly. The physicochemical properties of the polymeric ionic liquid were characterized by infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. The usefulness of SCSE–AMIIDB was demonstrated by the enrichment of trace benzimidazole anthelmintics. Several parameters affecting the extraction efficiency were investigated, and under the optimized conditions, a simple and effective method for the determination of trace benzimidazoles residues in water, milk and honey samples was established by coupling SCSE–AMIIDB with high performance liquid chromatography/diode array detection (SCSE–AMIIDB–HPLC/DAD). Results indicated that the limits of detection (S/N = 3) for target compounds were 0.020–0.072 μg L−1, 0.035–0.10 μg L−1 and 0.026–0.076 μg L−1 in water, milk and honey samples, respectively. In addition, an acceptable reproducibility was achieved by evaluating the repeatability and intermediate precision with relative standard deviations (RSD) of less than 9% and 11%, respectively. Finally, the established AMII–SCSE–HPLC/DAD method was successfully applied for the determination of benzimidazoles residues in milk, honey and environmental water samples. Recoveries obtained for the determination of benzimidazole anthelmintics in spiking samples ranged from 70.2% to 117.6%, with RSD below 12% in all cases.  相似文献   

19.
Dispersive liquid–liquid microextraction with little solvent consumption (DLLME-LSC), a novel dispersive liquid–liquid microextraction (DLLME) technique with few solvent requirements (13 μL of a binary mixture of disperser solvent and extraction solvent in the ratio of 6:4) and short extraction time (90 s), has been developed for extraction of organochlorine pesticides (OCPs) from water samples prior to gas chromatography/mass spectrometry analysis. In DLLME-LSC, much less volume of organic solvent is used as compared to DLLME. The new technique is less harmful to environment and yields a higher enrichment factor (1885–2648-fold in this study). Fine organic droplets were formed in the sample solution by manually shaking the test tube containing the mixture of sample solution and extraction solvent. The large surface area of the organic solvent droplets increases the rate of mass transfer from the water sample to the extractant and produces efficient extraction in a short period of time. DLLME-LSC shows good repeatability (RSD: 4.1–9.7% for reservoir water; 5.6–8.9% for river water) and high sensitivity (limits of detection: 0.8–2.5 ng/L for reservoir water; 0.4–1.3 ng/L for river water). The method can be used on various water samples (river water, tap water, sea water and reservoir water). It can be used for routine work for the investigation of OCPs.  相似文献   

20.
The determination of oxytetracycline in milk samples using a polymer inclusion membrane concept with high performance liquid chromatography (HPLC) was studied. The membranes developed are composed by cellulose acetate as polymer base, Cyanex 923 as carrier and o-nitrophenyl octyl ether as plasticizer. In the optimal conditions, the method exhibits good linearity in the range 0.03–0.20 mg L−1 with a limit of detection and quantification of 8.2 and 27.3 μg L−1 respectively. The method was successfully applied to the analysis of milk samples with high selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号