首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Shi ZG  Feng YQ  Xu L  Zhang M  Da SL 《Talanta》2004,63(3):593-598
Silica monoliths were fabricated inside fused-silica capillaries. Then the monolithic columns were coated with membrane-like zirconia. The zirconia-coated silica monoliths exhibited different EOF behavior comparing with that of bare silica monoliths. The magnitude and direction could be manipulated by changing the running buffers. Due to the amphoteric characteristic of zirconia, the silica monoliths with zirconia surface facilitate the separation of basic compounds. Aromatic amines and alkaloids were separated without obvious peak tailing. The zirconia surface was easily modified with octadecylphosphonic acid for the separation of neutral compounds. Column efficiency as high as 90,000 and 80,000 m−1 was obtained for beberine and naphthalene, respectively. Furthermore, the zirconia coating increased the stability of the monolithic columns. Even after being exposed to severe condition, there was no apparently efficiency decrease for the test samples.  相似文献   

2.
Tian Y  Feng R  Liao L  Liu H  Chen H  Zeng Z 《Electrophoresis》2008,29(15):3153-3159
An ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) was introduced as dynamic coating of a silica monolithic column for capillary electrochromatography of phenols and nucleoside monophosphates. The run-to-run and column-to-column repeatability of migration time for six phenols were satisfactory on this column with relative standard deviation values less than 0.90 and 4.31%, respectively. Anodic electroosmotic flow (EOF) was observed, which increased with the increase of [BMIM][BF4] concentration within 120 mM and when [BMIM][BF4] concentration was above 120 mM, EOF leveled off due to the saturation of [BMIM][BF4] on the monolith. Efficient separation of phenols and nucleoside monophosphates on this dynamically coated monolithic column was obtained, compared with a dynamically coated fused-silica column and unmodified silica monolithic column. The retention behavior of uncharged phenols is mainly manipulated by hydrophobic interactions due to the presence of butyl groups, and that of nucleoside monophosphates is governed by the electrostatic attraction mechanism based on the interaction between positively charged [BMIM][BF4] moieties and negatively charged phosphate groups. In addition, silica matrix also contributes to the separation resolution.  相似文献   

3.
Tian Y  Yang F  Yang X  Fu E  Xu Y  Zeng Z 《Electrophoresis》2008,29(11):2293-2300
1,4,10,13,16-Pentaazatricycloheneicosane-9,17-dione (macrocyclic polyamine)-modified polymer-based monolithic column for CEC was prepared by ring opening reaction of epoxide groups from poly(glycidyl methacrylate-co-ethylene dimethacrylate) (GMA-co-EDMA) monolith with macrocyclic polyamine. Conditions such as reaction time and concentration of macrocyclic polyamine for the modification reaction were optimized to generate substantial EOF and enough chromatographic interactions. Anodic EOF was observed in the pH range of 2.0-8.0 studied due to the protonation of macrcyclic polyamine at the surface of the monolith. Morphology of the monolithic column was examined by SEM and the incorporation of macrocyclic polyamine to the poly(GMA-co-EDMA) monolith was characterized by infrared (IR) spectra. Successful separation of inorganic anions, isomeric benzenediols, and benzoic acid derivatives on the monolithic column was achieved for CEC. In addition to hydrophobic interaction, hydrogen bonding and electrostatic interaction played a significant role in the separation process.  相似文献   

4.
Y Li  Y Chen  K Wang  L Nie  S Yao 《Electrophoresis》2012,33(13):2005-2011
One-pot synthesis of porous polymer monolith decorated with N-methylimidazolium in a capillary was described. The polymer matrix was synthesized by in situ copolymerization and quaterization of 3-chloro-2-hydroxylpropyl methacrylate (CHPMA), ethylene dimethacrylate (EDMA), and N-methylimidazole (N-MIz). The influencing factors including amount of cross-linkers, composition of porogenic solvents, and polymerization temperature on the formation of the monolithic column were investigated. The monolithic column exhibited high column efficiency for thiourea, up to 135 000 plates per meter, and phenylmethanol, up to 102 000 plates per meter. Different types of compounds including alkylbenzenes, phenols, and inorganic anions were successfully baseline separated by capillary electrochromatography (CEC). The separation of theses analytes on the column indicated typical reversed-phase and anion-exchange chromatographic retention mechanism.  相似文献   

5.
A carboxy precursor monolithic column, namely poly(carboxy ethyl acrylate-co-ethylene glycol dimethacrylate) was first produced in a 100 μm i.d. fused-silica capillary and subsequently surface bonded with n-octadecyl (C18) ligands by a post-polymerization functionalization process with octadecylamine in the presence of N,N´-dicyclohexylcarbodiimide. The bonding of octadecyl ligands was achieved via an amide linkage between the carboxy functions of the precursor monolith and the amino group of the octadecylamine compound. The resulting C18 monolith exhibited a very low electroosmotic flow (EOF), a fact that required the incorporation of small amounts of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) in the polymerization solution to produce a precursor monolith with fixed negative charges of sulfonate groups. This may indicate that the conjugation of the carboxy functions with octadecylamine occurred to a large extent so that the amount of residual carboxy functions was sparsely dispersed and not enough to produce a desirable EOF. The EOF velocity of the C18 column having fixed negative charges provided by the incorporated AMPS increased with increasing ACN content of the mobile phase signaling an increased binding of mobile phase ions to the polar amide linkages near the monolithic surface, and a decreased viscosity of the mobile phase, both of which would result in increased EOF velocity. The C18 monolithic column constituted a novel nonpolar sorbent for reversed-phase capillary electrochromatography for nonpolar solutes, e.g., alkylbenzenes, alkylphenyl ketones, and polyaromatic hydrocarbons, and slightly polar compounds including phenol and chlorophenols. The C18 monolithic column exhibited relatively high selectivity toward chlorophenols differing by one chloro substituent.  相似文献   

6.
In this study, several organic polymer-based monoliths prepared by single step in situ copolymerization of styrene- and methacrylate ester-based monomers (styrene (S), divinylbenzene (DVB) and lauryl methacrylate (LMA)) were developed as stationary phases of capillary electrochromatography (CEC) for the analyses of synthetic antioxidants. These monoliths were characterized by examining the SEM image, IR spectrum, and measuring the pore size, surface area, conversion yield, and thermal decomposition temperature. The polymerization procedure was optimized by varying the reaction temperature, the reaction time, and the LMA-styrene ratio. The LMA-styrene ratio had the most significant influence on the peak symmetry of butylated hydroxyanisole (BHA) and 2, 6-di-tert-butyl-4-methyl phenol (BHT), the latter being greatly affected by excessive peak tailing in the poly(S-DVB) monolith. It showed that the interaction between the poly(S-DVB) monolith and the antioxidant (BHT or BHA) was significantly altered by the insertion of LMA. Compared with the best HPLC and CE methods previously reported, this proposed CEC method provides a comparable separation ability for the five antioxidants analyzed. This study demonstrates that the potentiality of poly(S-DVB-LMA) monolith as stationary phase, especially for CEC system, because of high thermal stability and good column reproducibility.  相似文献   

7.
The use of high internal phase emulsion polymers (polyHIPEs) for CEC applications has remained relatively unexplored. A few reports exist in the literature for the preparation of similar structures. In this study, polyHIPEs having high porosity, and interconnected open-cell structure, were introduced and evaluated as stationary phase for CEC. The polyHIPE monolithic columns were prepared by the in situ polymerization of isodecylacrylate (IDA) and divinylbenzene (DVB) in the continuous phase of a high internal phase emulsion (HIPE). Due to its well-defined polyHIPE structure with interconnected micron size spherical voids, the columns synthesized with different initiator concentrations were successfully used for the separation of alkylbenzenes. Furthermore, the columns indicated a strong electroosmotic flow (EOF) without any additional EOF generating monomer probably due to the presence of ionizable sulfate groups coming from the water-soluble initiator used in the preparation of polyHIPE matrix. The best chromatographic performance in the separation of alkylbenzenes was achieved by using 70% ACN in the mobile phase with high column efficiency (up to 200 000 plates/m).  相似文献   

8.
A novel phenylalanine (Phe) functionalized zwitterionic monolith for hydrophobic electrochromatography was prepared by a two‐step procedure involving the synthesis of glycidyl methacrylate based polymer monolith and subsequent on‐column chemical modification with Phe via ring‐opening reaction of epoxides. Benefitting from the hydrophobicity of both methacrylate‐based matrix and aromatic group of Phe, this monolith could exhibit good hydrophobic interaction for the separation. Typical RP chromatographic behavior was observed toward various solutes. The well‐controlled cathodic or anodic EOF of the prepared column could be facilely switched by altering the pH values of running buffers. The separation mechanism of this Phe functionalized zwitterionic monolith is discussed in detail. Two mixed‐mode mechanisms of RP/cation exchange and RP/anion exchange could be further realized on the same monolith in different pH condition of the mobile phase. Versatile separation capabilities of neutral, basic, and acidic analytes have been successfully achieved in this zwitterionic monolith by CEC method.  相似文献   

9.
A novel terminal‐vinyl liquid crystal crown ether (2‐[4‐(3‐undeceny‐1‐yloxy)‐phenyl]‐2‐[4′‐(4′‐carboxybenzo‐15‐crown‐5)‐phenyl] propane) (LCCE) was synthesized and used to modify hybrid silica‐based monolithic column possessing vinyl ligands for CEC. The monolithic silica matrix containing vinyl functionalities was prepared by in situ co‐condensation of tetramethoxysilane and vinyl‐trimethoxysilane via sol–gel process and chemically modified with LCCE by free radical polymerization procedure using α,α'‐azobisisobutyronitrile as an initiator. Morphology of the monolithic column was examined by SEM and mercury porosimetry and the successful incorporation of terminal‐vinyl LCCE to the vinyl‐hybrid monolith was characterized by infrared spectra. Polycyclic aromatic hydrocarbons, benzenediols, carbamate pesticides and steroids, were successfully separated on the column. The separations were dominated hydrogen bonding supplied by crown ether and hydrophobic interaction offered by the liquid crystal. The effect of ACN concentration on separation performance was studied and the result indicated that RP retention mechanism played an important role. Reproducibilities of migration times for the six selected polycyclic aromatic hydrocarbons were reasonable, with relative standard deviation less than 3.50% for five consecutive within‐column runs and were 8.38–9.11% for column‐to‐column measurements of three columns.  相似文献   

10.
An anion exchange monolithic silica capillary column was prepared by surface modification of a hybrid monolithic silica capillary column prepared from a mixture of tetramethoxysilane (TMOS) and methyltrimethoxysilane (MTMS). The surface modification was carried out by on-column copolymerization of N-[3-(dimethylamino)propyl]acrylamide methyl chloride-quaternary salt (DMAPAA-Q) with 3-methacryloxypropyl moieties bonded as an anchor to the silica surface to form a strong anion exchange stationary phase. The columns were examined for their performance in liquid chromatography (LC) and capillary electrochromatography (CEC) separations of common anions. The ions were separated using 50 mM phosphate buffer at pH 6.6. Evaluation by LC produced an average of 30,000 theoretical plates (33 cm column length) for the inorganic anions and nucleotides. Evaluation by CEC, using the same buffer, produced enhanced chromatographic performance of up to ca. 90,000 theoretical plates and a theoretical plate height of ca. 4 μm. Although reduced efficiency was observed for inorganic anions that were retained a long time, the results of this study highlight the potential utility of the DMAPAA-Q stationary phase for anion separations. Figure Micro-LC performance evaluation of a strong anion exchange silica monolith column, 100H-MOP-DMAPAA-Q, 33 cm in length, with a mobile phase of 50 mM phosphate buffer, pH 2.8; linear velocity: u = 1.8 mm/s; UV-Vis detection at 254 nm. Sample solution (5 mg/mL of each component, 4 mL) was injected in split flow injection mode at a split ratio of ca. 1:1900 with a pump flow rate of 1.5 mL/min  相似文献   

11.
Porous zirconia monolith (ZM) modified with cellulose 3,5-dimethylphenylcarbamate (CDMPC) was used as chiral stationary phase to separate basic chiral compounds in capillary electrochromatography. The electroosmotic flow behavior of bare and CDMPC-modified zirconia monolithic (CDMPC-ZM) column was studied in ACN/phosphate buffer eluents of pH ranging from 2 to 12. The CDMPC-ZM column was evaluated by investigating the influences of pH, the type and composition of organic modifier of the eluent on enantioseparation. CEC separations at pH 9 provided the best resolutions for the analytes studied, which are better than those observed on CDMPC-modified silica monolithic columns under similar chromatographic conditions. No appreciable decline in retention and resolution factors after over 200 injections, and run-to-run and day-to-day repeatabilities of the column of less than 3% indicate the stability of the zirconia monolithic column in basic media.  相似文献   

12.
Separation of rhubarb anthraquinones by capillary electrochromatography   总被引:2,自引:0,他引:2  
J. Ding  B. Ning  G. Fu  Y. Lu  S. Dong 《Chromatographia》2000,52(5-6):285-288
Summary A rapid, simple method for packing capillary electrochromatography (CEC) columns with HPLC stationary phases is described. The basis of the method is the use of a vacuum to suck a slurry of stationary phase into the fused-silica tubing, a procedure which takes approximately ten seconds only, then compression of the stationary phase by means of an HPLC pump. These packed CEC columns have been investigated for the separation of five anthraquinones from rhubarb. Separation of the anthraquinones inRheum palmatum L. under optimized conditions is presented.  相似文献   

13.
A mixture of unsaturated fatty acid methyl esters was separated with a new splitless capillary set-up. With the employed apparatus configuration different capillary separation techniques such as capillary high-performance liquid chromatography (cHPLC), capillary electrochromatography (CEC) and pressurized capillary electrochromatography (pCEC) could be applied. The detection and identification of the sample compounds were accomplished by hyphenating these capillary separation techniques with nuclear magnetic resonance (NMR) spectroscopy using a novel configuration of the detection capillary set-up. Using modified electrokinetically driven separation techniques, the electric field was applied solely across the separation column. With this improved interface for capillary liquid chromatography-NMR on-line coupling, the stereochemical assignment of the cis and trans configuration of unsaturated fatty acids could be easily accomplished. Finally, the results of cHPLC-NMR, CEC-NMR and pCEC-NMR coupling experiments were compared.Dedicated to Professor Günter Häfelinger on the occasion of his 65th birthday  相似文献   

14.
A single-step approach has been used to prepare a monolithic electrochromatographic column by sol-gel processing of an organofunctional silicon alkoxide precursor that contains a propyl-N,N,N-trimethylammonium group. We have found that the time of adding the porogen, poly(ethylene glycol), during the sol-gel reaction affected the separation performance. Since the surface charge of this material is switchable in sign upon manipulation of solution pH, the direction and magnitude of the electroosmotic flow (EOF) can be controlled by adjusting the pH of the running electrolyte. By controlling the direction of the EOF from cathode to anode, inorganic anions can be separated in a short time. Because of the quaternary ammonium functional group, the resulting material is anion exchangeable. Interestingly, the anion-exchange selectivity of inorganic anions on this column changes with solution pH or applied voltage. The column shows excellent run to run reproducibility (R.S.D. < 0.4%), good day to day reproducibility (R.S.D. < 4%), and reasonable column to column reproducibility (R.S.D. < 9%).  相似文献   

15.
Summary Capillary electrochromatography (CEC) is classed as a hybrid technique between CE and HPLC and it combines the advantages of both these techniques. However, in some cases the disadvantages are also brought to light and some of these are difficult to resolve. For example the analysis of basic compounds using CEC. The problems of tailing peaks during HPLC analysis of basic compounds was resolved by end capping the residual silanol groups, but in CEC these are the groups that generate the electroosmotic flow. The analysis of basic compounds is crucial within the pharmaceutical industry where a high percentage of the drug actives are basic. Specially designed Continuous Beds stationary phases (CB) can mean that each application can have a specific stationary phase. In order to overcome the problem associated with the analysis of basic compounds using electrochromatography, we have designed a CB stationary phase with a positive charge, which could be operated using negative voltage. The resulting chromatography showed almost gaussian peaks for bases like nortriptyline which tail significantly using stationary phase typically used in CEC.  相似文献   

16.
《先进技术聚合物》2018,29(7):2110-2120
A reactive monolith based on the polymerization of 3‐chloro‐2‐hydroxypropyl methacrylate, (HPMA‐Cl), with a crosslinking agent, ethylene glycol dimethacrylate (EDMA), was synthesized and post‐functionalized with a macromolecular ligand polyethyleneimine. Monolithic columns with controlled permeability and pore structure were prepared by free radical polymerization in the presence of a binary porogenic mixture of isopropanol and decanol. The presence of chloropropyl functionality in the pristine monolith allowed the synthesis of a post‐fuctionalized monolith carrying cationic groups that was used to control the magnitude of electroosmotic flow (EOF) in electrochromatographic separation. In the synthesis of pristine monoliths, the feed concentration of functional monomer (ie, HPMA‐Cl) was changed between 30 and 60 v/v % for obtaining cationic monoliths providing satisfactory electrochromatographic separation. The best electrochromatographic performance was obtained with the polyethyleneimine functionalized monolith prepared by using the pristine monolith obtained by 60% (v/v) monomer concentration. This monolith was used in reversed phase and hydrophilic interaction capillary electrochromatography modes for the separation of alkylbenzenes, polycyclic aromatic hydrocarbons, phenols, and nucleosides, using mobile phases with low acetonitrile (ACN) contents ranging between 20% and 35% (v/v). This ACN range was remarkably lower than the content of ACN used on the hydrophilic polymethacrylate‐based monoliths reported previously (ie, >90%). The plate heights up to 5.3 μm were obtained for the separation of nucleosides with the environmental friendly mobile phases whose ACN contents were also remarkably lower than that of similar polymethacrylate‐based monoliths.  相似文献   

17.
A novel porous polymer monolith was prepared in situ in a fused-silica capillary using photoinitiated polymerization. Bisphenol A dimethacrylate (BPADMA) was selected as a crosslinker, copolymerized with benzyl methacrylate (BMA) in the presence of a binary porogenic solvent consisting of cyclohexanol and 1-decanol in ≤10 min. The resulting poly(BMA-co-BPADMA) monoliths exhibited good permeability and mechanical stability. Mixtures of alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs) or phenolic compounds were successfully separated by CEC. A similar monolith was also prepared with ethylene dimethacrylate (EDMA) as the crosslinker instead of BPADMA to compare the separation ability of the resulting monoliths. The results indicated that poly(BMA-co-BPADMA) monoliths have better selectivity for aromatic analytes and greater chromatographic stability in higher aqueous mobile phase.  相似文献   

18.
Both poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) and poly(4-methylstyrene-co-vinylbenzyl chloride-co-divinylbenzene) monolithic columns have been hypercrosslinked and for the first time used to achieve capillary electrochromatographic separations. Although these columns do not contain ionizable functionalities, electroosmotic flow was observed due to adsorption of ions from a buffer solution contained in the mobile phase on the surface of the hydrophobic polymer. An increase of more than one order of magnitude was observed with the use of both monolithic polymers. The hypercrosslinking reaction creates a large surface area thus enabling adsorption of a much larger number of ions. Alkylbenzenes were successfully separated using the hypercrosslinked monolithic columns.  相似文献   

19.
Capillary electrochromatography (CEC), which combines the advantages of the high efficiency of capillary electrophoresis (CE) and the high selectivity of liquid chromatography (LC), has recently received considerable attention. Most CEC experiments have been performed with capillary columns packed with small LC packing materials (1.5–5 μm particle diameter). However, problems such as difficulties in packing the small LC packing materials and fabricating the frits still exist in preparing the CEC column. The use of open-tubular columns in CEC is therefore an alternative approach that can eliminate the problems encountered in packed-column CEC. So far, several types of open-tubular columns have been proposed for CEC separations and in this article recent progress in this area is reviewed.  相似文献   

20.
Column technology for capillary electrochromatography   总被引:4,自引:0,他引:4  
Column technologies for capillary electrochromatography (CEC) are reviewed. To achieve high efficiency, the inner diameters of open-tubular and packed columns should be less than 25 and 200 μm, respectively. To obtain acceptable separation speed under typical CEC conditions (e.g. 30 kV, 1 mm s−1 electroosmotic flow velocity, and 2–4×10−8 m2 V−1 s−1 electroosmotic mobility) the column lengths for open-tubular and packed columns should be less than 120 and 60 cm, respectively. Capillary CEC columns are generally classified into three types: packed, open-tubular, and continuous-bed or monolithic. The various column preparation procedures and the advantages and disadvantages of each column type are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号