首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Sulfonylurea herbicides in soil extracts were concentrated using off-line solid-phase extraction (SPE), and determined by capillary zone electrophoresis (CZE) and UV detection. The method involves extraction of soils with 0.1 M NaHCO3 solution and subsequent preconcentration by using C18 cartridges prior to separation of the pesticide using CZE. The results show that a C18 cartridge is suitable for the purification of sulfonylurea herbicides in soil extracts with the recoveries ranging from 65–103%. The separation conditions affecting the resolution and detection sensitivity was systematically investigated. The sulfonylureas were resolved well using 30 mM sodium acetate (NaAc)/acetic acid (HAc)+10% acetonitrile (ACN) buffer at pH 4.80. The calibration plots for the test solutes in the concentration of 0.2–50 mg L−1 were linear with detection limits in the range of 0.05–0.10 mgL−1. The proposed method has been successfully demonstrated for the determination of sulfonylurea herbicides in soil samples.  相似文献   

2.
This paper reports the preparation of metsulfuron-methyl (MSM) imprinted polymer layer-coated silica nanoparticles toward analysis of trace sulfonylurea herbicides in complicated matrices. To induce the selective occurrence of surface polymerization, the polymerizable double bonds were first grafted at the surface of silica nanoparticles by the silylation. Afterwards, the MSM templates were imprinted into the polymer-coating layer through the interaction with functional monomers. The programmed heating led to the formation of uniform MSM-imprinted polymer layer with controllable thickness, and further improved the reproducibility of rebinding capacity. After removal of templates, recognition sites of MSM were exposed in the polymer layers. As a result, the maximum rebinding capacity was achieved with the use of optimal grafting ratio. There was also evidence indicating that the MSM-imprinted polymer nanoparticles compared with nonimprinted polymer nanoparticles had a higher selectivity and affinity to four structure-like sulfonylurea herbicides. Moreover, using the imprinted particles as dispersive solid-phase extraction (DSPE) materials, the recoveries of four sulfonylurea herbicides determined by high-performance liquid chromatography (HPLC) were 80.2-99.5%, 83.8-102.4%, 77.8-93.3%, and 73.8-110.8% in the spiked soil, rice, soybean, and corn samples, respectively. These results show the possibility that the highly selective separation and enrichment of trace sulfonylurea herbicides from soil and crop samples can be achieved by the molecular imprinting modification at the surface of silica nanoparticles.  相似文献   

3.
A magnetic solid phase extraction (MSPE) method coupled with high-performance liquid chromatography (HPLC) was proposed for the determination of five sulfonylurea herbicides (bensulfuron-methyl, prosulfuron, pyrazosulfuron-ethyl, chlorimuron-ethyl and triflusulfuron-methyl) in environmental water samples. The magnetic adsorbent was prepared by incorporating Fe3O4 nanoparticles and surfactant into a silica matrix according to a sol–gel procedure, which can provide surfactant free extracts during the eluting step to avoid chromatographic interference. The prepared adsorbent was used to extract the sulfonylurea herbicides in several kinds of water samples. The main factors affecting the extraction efficiency, including desorption conditions, extraction time, sample volume, and sample solution pH were optimized. Under the optimum conditions, good linearity was obtained within the range of 0.2–50.0 μg L−1 for all analytes, with correlation coefficients ranging from 0.9993 to 0.9999. The enrichment factors were between 1200 and 1410, and the limits of detection were between 0.078 and 0.10 μg L−1. The proposed method was successfully applied in the analysis of sulfonylurea herbicides in environmental samples (tap, reservoir, river, and rice field). The recoveries of the method ranged between 80.4% and 107.1%. This study reported for the first time the use of MSPE procedure in the preconcentration of sulfonylurea herbicides in environmental samples. The procedure proved to be efficient, environmentally friendly, and fast.  相似文献   

4.
Guo L  Deng Q  Fang G  Gao W  Wang S 《Journal of chromatography. A》2011,1218(37):6271-6277
In this report, vinylimidazolium ionic liquid as a functional monomer for preparation of chlorsulfuron (CS) imprinted polymers were first studied. The imprinted materials showed high selectivity for CS, and fast kinetics so that adsorption equilibrium was achieved within 5 min. These materials have been further employed to detect trace CS from water samples by online preconcentration coupled with HPLC. The sorbent offered good linearity (0.005-30 μg L(-1), r(2)>0.99) for on-line solid-phase extraction of trace chlorsulfuron. Under the optimal experimental conditions, the recovery for chlorsulfuron was in the range of 81.0-110.1% for the water samples, with RSDs ranging from 1.2 to 7.6%.  相似文献   

5.
《Chromatographia》1995,41(5-6):178-182
Summary High-performance liquid chromatography with UV detection was used to determine eight triazine herbicides in milk. Solid-phase extraction was performed using a double trap; first, a nonspecific adsorbent (Carbograph), and then a cation exchanger (SCX). Eluate from the SCX was evaporated to dryness under reduced pressure and redissolved in mobile phase. An aliquot was injected into the chromatograph, which was operated isocratically in the reverse-phase mode with UV detection at 225 nm. Analytical recoveries for the eight triazines ranged from 73.0 % to 92.4 %. The limit of sensitivity of this method was about 0.09 ng mL−1 of milk. The method was validated and evaluated by comparison with a method reported in literature.  相似文献   

6.
Summary High-performance liquid chromatography with UV detection was used to determine eight triazine herbicides in milk. Solid-phase extraction was performed using a double trap; first, a nonspecific adsorbent (Carbograph), and then a cation exchanger (SCX).Eluate from the SCX was evaporated to dryness under reduced pressure and redissolved in mobile phase. An aliquot was injected into the chromatography, which was operated isocratically in the reverse-phase mode with UV detection at 225 nm.Analytical recoveries for the eight triazines ranged from 73.0% to 92.4%. The limit of sensitivity of this method was about 0.09 ng mL–1 of milk. The method was validated and evaluated by comparison with a method reported in literature.  相似文献   

7.
Zhao RS  Yuan JP  Jiang T  Shi JB  Cheng CG 《Talanta》2008,76(4):956-959
In this article, a new method for the determination of triazine herbicides atrazine and simazine in environment aqueous samples was developed. It was based on solid-phase extraction (SPE) using bamboo charcoal as adsorbent and high-performance liquid chromatography-ultraviolet detector (HPLC-UV) for the enrichment and determination of atrazine and simazine at trace level. Related important factors influencing the extraction efficiency, such as the kind of eluent and its volume, flow rate of the sample, pH of the sample, and volume of the sample, were investigated and optimized in detail. Under the optimal conditions, the experimental results showed that excellent linearity was obtained over the range of 0.5–30 μg L−1 with correlation coefficients 0.9991 and 0.9982, for atrazine and simazine, respectively; and the relative standard deviations of two analytes were 8.3, 8.7%, respectively. The proposed method was successfully applied to the analysis of tap water and well water samples. And satisfactory spiked recoveries were obtained in the range of 75.2–107.1%. The above results indicated that the developed method was an excellent alternative for the routine analysis in environmental field.  相似文献   

8.
The characteristic kinetic and retention properties of a silica-based cyanopropylsiloxane-bonded sorbent for solid-phase extraction are described. Abraham′s solvation parameter model is used to characterize the contribution of individual intermolecular interactions to retention under liquid chromatographic and sample processing conditions with aqueous methanol mixtures as the mobile phase. The main features governing retention by the sorbent are the solute's size and hydrogen-bond basicity; interactions of a dipole type are not significant when aqueous methanol solutions are employed as the mobile phase. Compared to typical silica-based octadecylsioxane-bonded sorbents the greater difficulty of forming a cavity in the solvated cyanopropylsiloxane-bonded sorbent more than offsets the more favorable dipole-type and solute hydrogenbond base interactions of the cyanopropylsiloxane-bonded sorbent. It is shown that there are no practical circumstances for which a cyanopropylsiloxane-bonded sorbent would be more useful than a typical ODS sorbent for the isolation of organic non-electrolytes from water by solid-phase extraction.  相似文献   

9.
N-Methylimidazolium modified magnetic particles (MIm-MPs) were prepared and applied in the solid phase extraction of genomic deoxyribonucleic acid (DNA) from genetically modified soybeans. The adsorption of MIm-MPs for DNA mainly resulted from the strong electrostatic interaction between the positively charged MPs and the negatively charged DNA. The elution of DNA from MPs–DNA conjugates using phosphate buffer resulted from the stronger electrostatic interaction of phosphate ions with MPs than DNA. In the extraction procedure, no harmful reagents (e.g. phenol, chloroform and isopropanol, etc.) used, high yield (10.4 μg DNA per 30 mg sample) and high quality (A260/A280 = 1.82) of DNA can be realized. The as-prepared DNA was used as template for duplex-polymerase chain reaction (PCR) and the PCR products were analyzed by a sieving capillary electrophoresis method. Quick and high quality extraction of DNA template, and fast and high resolution detection of duplex PCR products can be realized using the developed method. No toxic reagents are used throughout the method.  相似文献   

10.
Luo W  Zhu L  Yu C  Tang H  Yu H  Li X  Zhang X 《Analytica chimica acta》2008,618(2):147-156
Very severe reaction conditions are required in the conventional synthesis of molecularly imprinted polymers (MIPs), which is unfavorable to their applications in chemical separation and analysis. A simple surface molecular imprinting approach was developed to synthesize MIP-coated SiO2 micro-particles in aqueous solutions. The 1H NMR and UV-vis spectroscopic analysis indicated that via hydrogen bonding, the functional monomer (o-phenylenediamine) can associate with the target (template) 2,4-dinitrophenol (2,4-DNP), as a model compound of organic pollutants, to form a precursor in aqueous solution. The copolymerization of this precursor and the free monomer was performed in the aqueous suspension of surface modified SiO2 particles, leading to the formation of MIP-coated SiO2 micro-particles. The MIP-coated silica particles were characterized with FT-IR, TGA, and UV-vis solid-state reflection spectroscopy, and were further demonstrated to have high adsorption capacity, excellent selectivity and site accessibility for 2,4-DNP. The new absorbent was successfully used in solid-phase extraction (SPE) to selectively enrich and determine 2,4-DNP in aqueous samples. The experimental results indicated that the MIP-SPE column yielded recoveries higher than 92% with R.S.D. <2.8%, much better than the commercial C18-SPE column, which produced a recovery less than 30% with R.S.D. <3.0%.  相似文献   

11.
A fast and novel analytical method was developed for the determination of trace levels of sulfonylurea herbicides in water and soil samples. Graphene was used as a sorbent for extraction, and ultra high performance liquid chromatography with tandem mass spectrometry was used for quantification. Five sulfonylurea herbicides were preconcentrated from water samples using a graphene‐loaded packed cartridge, while extraction from soil samples was performed in a single step using graphene‐supported matrix solid‐phase dispersion. Under the optimized conditions, the calibration plots were linear in the range between 5 and 1000 ng/L for water samples, and between 1 and 200 ng/g for soil samples. All correlation coefficients (R) were >0.99. The limits of detection for water and soil samples were 0.28–0.53 ng/L and 0.08–0.26 ng/g, respectively. This method was successfully applied to the analysis of spiked samples of environmental water and soil, with recoveries ranging from 84.2–109.3 and 86.12–103.2%, respectively, all with relative standard deviations of <10%.  相似文献   

12.
Zhou YY  Wang SW  Kim KN  Li JH  Yan XP 《Talanta》2006,69(4):970-975
Dichlorodiphenyltrichloroethane (DDT) and its metabolites are a typical kind of persistent organic pollutants (POPs). Development of a simple, cost-effective and sensitive methodology to monitor DDTs concentrations in water environment is of particular significance for understanding the fate and behavior of these pollutants. In this paper, a method on the basis of solid-phase extraction (SPE) using expanded graphite (EG) as sorbent coupled on-line with high performance liquid chromatography (HPLC) was developed for the determination of trace levels of p,p′-DDD (2,2-bis(4-chlorophenyl)-1,1-dichloroethane), p,p′-DDT, o,p′-DDT and p,p′-DDE (2,2-bis(4-chlorophenyl)-1,1-dichloroethene) in water. The analytes in water were preconcentrated onto the SPE column packed with expanded graphite, and subsequently eluted with methanol-water (90:10) mixed solvent. HPLC with a photodiode array detector was used for their separation and detection. The developed on-line solid-phase extraction protocol for HPLC permits the current HPLC separation and the next preconcentration proceeded in parallel, and thus allows one determination within 8 min. The precision (R.S.D.) for 10 replicate injections of a mixture of 1 μg l−1 of each analyte was 3.2-6.2% for the peak area measurement. The detection limits (S/N = 3) for preconcentrating 50 ml of sample solution ranged from 10 to 25 ng l−1 at a sample throughput of 7.5 samples h−1. The enhancement factors were about 700. The method was applied to the determination of trace p,p′-DDD, p,p′-DDT, o,p′-DDT and p,p′-DDE in local lake, river and tap water samples.  相似文献   

13.
An amino-functionalized magnetic covalent organic framework composite TpBD-(NH2)2@Fe3O4 (Tp=Tp1,3,5-triformylphloroglucinol, BD-(NH2)2 is 3,3',4,4'-biphenyltetramine) was prepared by post-synthesis modification. Due to its abundant benzene rings and amino groups, large specific surface area and porous structure, the prepared TpBD-(NH2)2@Fe3O4 exhibits high extraction efficiency toward sulfonylurea herbicides. Based on this, a new method of magnetic solid-phase extraction with TpBD-(NH2)2@Fe3O4 as the sorbent combined with high-performance liquid chromatography and ultraviolet detection was developed for trace analysis of sulfonylurea herbicides in environmental water, soil and tobacco leaves samples from tobacco land. Under the optimized conditions, the limits of detection within 0.05–0.14 μg/L were achieved with a high enrichment factor of 217-260-fold, and the relative standard deviations were 4.9–7.5% (n = 7, c = 0.5 μg/L). The linear range was around three orders of magnitude with the square of correlation coefficient higher than 0.9936. The method was applied to analyze five sulfonylurea herbicides in the environmental water, soil, and tobacco leave samples collected from tobacco land. No sulfonylurea herbicides were detected in these samples. The recoveries of target sulfonylurea herbicides in spiked environmental water, soil, and tobacco leaf samples were found in the range of 90.7–104, 70.7–99.0, and 59.3–97.8%, respectively. The results illustrate that the established TpBD-(NH2)2@Fe3O4-magnetic solid-phase extraction- high-performance liquid chromatography–ultraviolet detection method is efficient for the analysis of trace sulfonylurea herbicides in environmental samples.  相似文献   

14.
Anion-exchange solid-phase extraction accompanied with high-performance liquid chromatography has been developed for the determination of six kinds of aminopolycarboxylic acids (APCAs) in river water [N-(2-hydroxyethyl)ethylenediaminetriacetate (HEDTA), ethylenediaminetetraacetate (EDTA), 1,3-propanediaminetetraacetate (PDTA), diethylenetriaminepentaacetate (DTPA), 1,2-propanediaminetetraacetate (MeEDTA), and O,O′-bis(2-aminoethyl)ethyleneglycoltetraacetate (GEDTA)]. The enrichment of APCAs using an anion-exchange cartridge was successfully done by the removal of anions, which competed with APCAs in anion-exchange processes. Barium chloride solution was added to river water and the mixture was passed through On Guard II Ag and H cartridges and then a Bond Elut Jr.SAX cartridge to enrich APCAs. After elution, APCAs were analyzed on two reversed phase C30 columns connected in series and detected with ultraviolet detection. The enrichment using solid-phase extraction permitted the determination of APCAs in river water at concentrations as low as 1 nM. Good recoveries (83–111%) were obtained for each APCA by the standard addition method on three river water samples with high accuracy (RSD 1.8–9.5%). Applying this method, two kinds of APCAs, EDTA and DTPA, were determined in samples from the Oyabe and Senbo Rivers in Japan.  相似文献   

15.
Summary The trace-level determination of organic pollutants in complex matrices is difficult and often not reliable because theccurrent extraction procedures are non-selective. New extraction sorbents involving antigen-antibody interactions, called immunosorbents (ISs), have been synthesised in order to trap a group of structurally related pollutants. The IS capacity is always high for the analyte-antigen used to make the antibodies, but can be low for some related compounds. In this work, we show the relationship that exists between capacity, break-through volume and recovery of analytes because of the competition between the structurally related compounds for antibody sites. Breakthrough due to the overloading of the column should be avoided because calibration curves are no longer linear. The capacity of two ISs, one made for trapping the triazine pesticide group and the second for the phenylurea, group, have been optimised by selecting silica with 50 nm pore size. Calibration curves are linear for all the compounds in a mixture of ten phenylureas up to a concentration of 5 to 10 μg L−1 for each compound when handling 50 mL water samples through a precolumn packed with 0.22 g of IS. Under these conditions, reliable quantitative results are obtained because calibration curves are similar when compounds are alone or in a mixture. Application to the clean-up of soil extracts illustrates the high selectivity and the high potential of these new sorbents in environmental analysis. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

16.
Luo D  Yu QW  Yin HR  Feng YQ 《Analytica chimica acta》2007,588(2):261-267
A novel solid-phase extraction (SPE) sorbent, humic acid-bonded silica (HAS), was prepared. Humic acids (HAs) were grafted onto silica matrices via an amide linkage between humyl chloride and the amido terminus of 3-aminopropyltrimethoxysilane (APTS)-silica gel. The resulting material was characterized by Fourier transform infrared spectrometer, elemental analysis, and nitrogen adsorption analysis. This sorbent exhibits an excellent adsorption capacity for some electron-abundant analytes owing to its peculiar structure. In this paper, we choose benzo[a]pyrene (BaP) in oil as a probe to validate the adsorption capacity of the material. Thus a fast, cheap and simple SPE method with humic acid-bonded silica cartridge for edible oil clean-up, followed by high-performance liquid chromatography (HPLC) with fluorescence detection was established. The effects of experimental variables, such as washing and elution solvents, and the amount of sorbents have been studied. The recoveries of BaP in edible oils spiked at 0.2-100 μg kg−1 were in the range of 78.8-102.7% with relative standard deviations ranging between 1.3 and 9.3%; the limit of detection was -0.06 μg kg−1.  相似文献   

17.
A three‐phase hollow‐fiber liquid‐phase microextraction combined with a capillary LC method using diode array detection was proposed for the determination of six sulfonylurea herbicides, triasulfuron, metsulfuron‐methyl, chlorsulfuron, flazasulfuron, chlorimuron‐ethyl, and primisulfuron‐methyl, in environmental water samples. Different factors that can affect the extraction process such as extraction solvent, acidity of the donor phase, composition and pH of the acceptor phase, salt addition, stirring speed, and extraction time were optimized. Under the optimum conditions, detection and quantitation limits between 0.1 – 1.7 and 0.3 – 5.7 μg/L, respectively, and enrichment factors ranging from 71 to 548 were obtained. The calibration curves were linear within the range of 0.3 – 40 μg/L. Intra‐ and interday RSDs were <6.3 and 8.4%, respectively. The relative recoveries of the spiked ground and river water samples were in the range of 69.4 – 119.2 and 77.4 – 111.7%, respectively. The results of the study revealed that the developed methodology involves an efficient sample pretreatment allowing the preconcentration of analytes, combined with the use of a miniaturized separation technique, suitable for the accurate determination of sulfonylurea herbicides in water.  相似文献   

18.
A temperature-controlled ionic liquid dispersive liquid-phase microextraction in combination with high performance liquid chromatography was developed for the enrichment and determination of triazine herbicides such as cyanazine,simazine,and atrazine in water samples.1-Octyl-3-methylimidazolium hexafluorophosphate([C8MIM][PF6]) was selected as the extraction solvent.Several experimental parameters were optimized.Under the optimal conditions,the linear range for cyanazine was in the concentration range of 0.5–80 mg/L and the linear range for simazine and atrazine was in the range of1.0–100 mg/L.The limit of detection(LOD,S/N = 3) was in the ranges of 0.05–0.06 mg/L,and the intra day and inter day precision(RSDs,n = 6) was in the ranges of 3.2%–6.6% and 4.8%–8.9%,respectively.Four real water samples were analyzed with the developed method,and the experimental results showed that the spiked recoveries were satisfactory.All these exhibited that the developed method was a valuable tool for monitoring such pollutants.  相似文献   

19.
In this study, 4-[4-phenylazo-phenoxy] butyl-1-thiol (AzSH) functionalized nanodendritic silver (AzS@AgNDs) materials were prepared as a solid-phase extraction (SPE) sorbent for the selective extraction of estrogens. AzS@AgNDs possess an extremely large surface-to-volume ratio and a small average particle size. The performance of the material was evaluated by selective enrichment of hexestrol, diethylstilbestrol, dienestrol and bisphenol A in water and milk samples followed by rapid ultra-performance liquid chromatography–electrospray ionization mass spectrometry (UPLC–ESI–MS) analyses. The results exhibited that AzS@AgNDs had excellent adsorption capability for the targeted estrogens. The limits of detection of the four estrogens ranged from 0.1 to 5.0 pg/mL. The recoveries of the estrogens spiked into tap water were over the range of 83.6–105.3% with relative standard deviations of 2.8–6.0%. The results indicated the capability of this method for the rapid determination of estrogens in milk and other environmental water samples. In addition, this method would be useful for the determination of human exposure and health risk assessments trace level of endocrine-disrupting compounds (EDCs) in drinking water.  相似文献   

20.
A new generation polymeric ionic liquid (PIL), poly(1-4-vinylbenzyl)-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (poly(VBHDIm+ NTf2)), was synthesized and is shown to exhibit impressive selectivity towards the extraction of 12 polycyclic aromatic hydrocarbons (PAHs) from aqueous samples when used as a sorbent coating in direct-immersion solid-phase microextraction (SPME) coupled to gas chromatography (GC). The PIL was imparted with aromatic character to enhance π–π interactions between the analytes and the sorbent coating. For comparison purposes, a PIL with similar structure but lacking the π–π interaction capability, poly(1-vinyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide) (poly(HDIm+ NTf2)), as well as a commercial polydimethylsiloxane (PDMS) sorbent coating were evaluated and exhibited much lower extraction efficiencies. Extraction parameters, including stir rate and extraction time, were studied and optimized. The detection limits of poly(VBHDIm+ NTf2), poly(HDIm+ NTf2), and PDMS coatings varied between 0.003–0.07 μg L−1, 0.02–0.6 μg L−1, and 0.1–6 μg L−1, respectively. The partition coefficients (log Kfs) of eight PAHs to the three studied fiber coatings were estimated using a static SPME approach. This study represents the first report of analyte partition coefficients to any PIL-based material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号