首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Capillary electrophoresis (CE) coupled with fiber-optic light-emitting diode-induced fluorescence detection has been developed for the separation of tyrosine (Tyr) enantiomers. R(−)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole was used as a chiral fluorescence tagged reagent for derivatization of Tyr. The effect of pH, running buffer concentration and applied voltage on enantioselectivity has been investigated. The optimum CE conditions are 15 mmol/L borate running buffer (pH 10.5) and 14-kV applied voltage. Good reproducibility was obtained with coefficient of variation (n = 7) of migration time and peak area less than 0.2 and 2.0%, respectively. The limits of detection of d- and l-Tyr derivatives were 2.9 and 2.2 μmol/L (S/N = 3), respectively. The proposed method has been successfully applied to the determination of Tyr in a commercial amino acid oral solution.  相似文献   

2.
Chen F  Wang S  Guo W  Hu M 《Talanta》2005,66(3):755-761
High performance capillary electrophoresis (HPCE) was developed for quantitative determination of 18 phenylthiohydantoin (PTH)-amino acids. The influence of electrolyte concentration, pH, organic modifier and applied voltage on HPCE performance was investigated. The HPCE separation of a PTH-amino acids mixture was much improved by adding organic modifier and Tris-boric acid buffer to the run buffer. After optimization of the method, 17 PTH-amino acids in a solution containing 18 PTH-amino acids could be separated using 400 mmol l−1 Tris-boric acid, 1.0 mmol l−1 diethylamine at pH 9.5 adjusted with 0.1 mol l−1 NaOH as a run buffer, voltage of 25 kV was applied, temperature was maintained at 25 °C, detection wavelength was 254 nm. The precision (n = 7) of this method is less than 3.2% (peak area) and 1.1% (migration time) of relative standard deviation (R.S.D.). Linearity was established over the concentration range 50-1000 μM of each derivative, with correlation coefficients (r) ranging between 0.9904 and 0.9993. The detection limits (S/N = 3) range from 2 to 48 μmol l−1. The method was applied to determine amino acids in Sargassum fusiforme, a marine algae collected from Tongtou County of Zhejiang Province in China with satisfactory results.  相似文献   

3.
A new capillary electrophoresis (CE) method for the determination of quinolizidine alkaloids in Sophora medicinal plants was developed. A total of seven alkaloid components (cytisine, sophocarpine, matrine, lehmannine, sophoranol, oxymatrine and oxysophocarpine) were separated within 15 min. The running buffer was a 50 mM phosphate buffer containing 1%HP-β-CD and 3.3% isopropanol. The linear calibration ranges were 5.50-88.0 μg ml−1 for cytisine and lehmannine, 5.00-88.0 μg ml−1 for sophocarpine and sophoranol, 5.60-89.6 μg ml−1 for matrine and oxysophocarpine, and 24.0-384 μg ml−1 for oxymatrine. The recoveries of the seven alkaloids were 96.0-102.9% with relative standard deviations from 1.50 to 3.00% (n = 5). The method was successfully applied to different Sophora medicinal plants including Sophora flavescens, Sophora tonkinensis and Sophora alopecuroides.  相似文献   

4.
Ganzera M  Lanser C  Stuppner H 《Talanta》2005,66(4):889-894
Ephedra sinica (Ma Huang) preparations have recently gained a lot of attention because of serious side effects associated with their prolonged consumption. Citrus aurantium var. amara is now used as an alternative, despite the fact that similar side effects are suspected. We have developed and validated the first analytical procedure for the simultaneous determination of all major alkaloids from both species. Using the ion-pairing reagent SDS, a C-18 stationary phase (3 μm material) and a pH-gradient for elution enabled the baseline separation of six alkaloids ((±)-octopamine, (±)-synephrine, tyramine, (−)-norephedrine, (+)-pseudoephedrine and (−)-ephedrine) within less than 30 min. The method is sensitive (LOD ≤ 4.6 ng and LOQ ≤ 16.2 ng on-column), selective (l-tyrosine and l-phenylalanine, two closely related amino acids did not interfere), accurate (recovery rates of spiked samples were between 97.5 and 102.0%), repeatable (σrel ≤ 4.6%) and precise (intra-day variation ≤7.7%, inter-day variation ≤7.0%). Without the need of a special sample treatment different matrices (plant material, commercial products) were successfully analyzed for their alkaloid content. Dominant alkaloids were (−)-ephedrine (0.9-1.6%) and/or (±)-synephrine (0.1-3.0%). Whether a product contained Ephedra-alkaloids or not could be determined in all investigated samples unambiguously.  相似文献   

5.
Zhou Q  Gao Y  Xie G 《Talanta》2011,85(3):1598-1602
Present study described a simple, sensitive, and viable method for the determination of bisphenol A, 4-n-nonylphenol and 4-tert-octylphenol in water samples using temperature-controlled ionic liquid dispersive liquid-phase microextraction coupled to high performance liquid chromatography-fluorescence detector. In this experiment, 1-octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]) was used as the extraction solvent, and bisphenol A, 4-n-nonylphenol and 4-tert-octylphenol were selected as the model analytes. Parameters affecting the extraction efficiency such as the volume of [C8MIM][PF6], dissolving temperature, extraction time, sample pH, centrifuging time and salting-out effect have been investigated in detail. Under the optimized conditions, good linear relationship was found in the concentration range of 1.0-100 μg L−1 for BPA, 1.5-150 μg L−1 for 4-NP, and 3-300 μg L−1 for 4-OP, respectively. Limits of detection (LOD, S/N = 3) were in the range of 0.23-0.48 μg L−1. Intra day and inter day precisions (RSDs, n = 6) were in the range of 4.6-5.5% and 8.5-13.3%, respectively. This method has been also successfully applied to analyze the real water samples at two different spiked concentrations and excellent results were obtained.  相似文献   

6.
19F NMR spectroscopy was applied to the quantitative determination of fluoxetine enantiomers using different chiral recognition agents in pharmaceutical formulations. Several parameters affecting the enantioresolution including the type and concentration of chiral selector, concentration of fluoxetine and temperature were studied. The chiral selectors investigated are the cyclic oligosaccharides α-, β- and γ-cyclodextrin and a diamino derivative of methylated α-cyclodextrin (DAM-α-CD), linear polysaccharides (maltodextrin with dextrose equivalents of 4.0-7.0, 13.0-17.0 and 16.5-19.5) and the macrocyclic antibiotic vancomycin. Among the chiral selectors used, DAM-α-CD turned out to give the best resolution of the 19F NMR signals of (R)- and (S)-fluoxetine. The calibration curve was linear for (R)- and (S)-fluoxetine over the range 0.10-1.35 mg mL−1, the detection limits (S/N = 3) being 5.9 and 7.5 μg mL−1 for the pure solutions of (R)- and (S)-fluoxetine, respectively. The recovery studies performed on pharmaceutical samples ranged from about 90 to 110% with relative standard deviations of <8%. The results showed that the proposed method is rapid, precise and accurate. Applying statistical Student's t-test revealed insignificant difference between the real and measured contents at the 95% confidence level.  相似文献   

7.
A new catalytic oxidative coupling reaction of N,N-dimethyl-p-phenylenediamine (DPD) with 1,3-phenylenediamine (mPD) in the presence of hydrogen peroxide has been developed for trace metals analysis. The rate of the oxidation/coupling reaction can be enhanced significantly by iron, copper and cobalt. These metal ions can catalyze the oxidation reaction of DPD to form an oxidized product; the oxidized DPD was then coupled with mPD to give a blue-colored product which was measured spectrophotometrically at 650 nm. On the basis of such a reaction scheme, two simple flow injection analysis methods for the determination of copper and iron have been developed. Detailed studies on chemical and FIA variables affecting the sensitivity of the detection were carried out. Interferences from several ionic species were examined for the determination of copper: the interference effect by Fe(III) and Fe(II) up to 1.5 mg L−1 was successfully suppressed by pretreating sample with ammonium acetate buffer solution (pH 8.4). Good linearity of a standard calibration graph was obtained over the ranges of 0-8 and 0-2 μg L−1 of copper and iron, respectively, and the detection limits were 0.05 and 0.02 μg L−1 for copper and iron, respectively. The precision of the methods in terms of relative standard deviation were 1.4 and 1.5% of R.S.D. which were obtained from 10 injections of 2.0 and 1.0 μg L−1 of standard copper and iron, respectively. The proposed methods were successfully applied to the determination of copper and iron in tap and river water samples. The accuracy of the proposed methods was assessed by the analysis of certified reference material of river water.  相似文献   

8.
Single crystals of SrAl2Si2 were synthesized by reaction of the elements in an aluminum flux at 1000 °C. SrAl2Si2 is isostructural to CaAl2Si2 and crystallizes in the hexagonal space group P-3m1 (90 K, a=4.1834 (2), c=7.4104 (2) Å, Z=1, R1=0.0156, wR2=0.0308). Thermal analysis shows that the compound melts at ∼1020 °C. Low-temperature resistivity on single crystals along the c-axis shows metallic behavior with room temperature resistivity value of ∼7.5 mΩ cm. High-temperature Seebeck, resistivity, and thermal conductivity measurements were made on hot-pressed pellets. The Seebeck coefficient shows negative values in entire temperature range decreasing from ∼−78 μV K−1 at room temperature to −34 μV K−1 at 1173 K. Seebeck coefficients are negative indicating n-type behavior; however, the temperature dependence is consistent with contribution from minority p-type carriers as well. The lattice contribution to the thermal conductivity is higher than for clathrate structures containing Al and Si, approximately 50 mW cm−1 K, and contributes to the overall low zT for this compound.  相似文献   

9.
Somer G  Unal U 《Talanta》2004,62(2):323-328
Using the DPP polarograms of wet digested cauliflower sample in acetate buffer at pH values of 2, 4 and 6, Fe, Zn, Mo, Se, Cr, Cd, Pb, Ti and Cu quantities were determined. The best separation and determination conditions for Zn, Se and Mo was pH 2; for Cr, Zn, Mo and As was pH 4; for Pb pH 6, for Ti, Cu and Fe was pH 6-7 EDTA, for Cd pH 2 EDTA and for lead pH 6, all in acetate buffer. The trace element ranges for cauliflowers from two different seasons were (first figure for winter, the second for summer) for Se 120-250 μg g−1, Fe 70-85 μg g−1, Cu 320-150 μg g−1, Ti 90-120 μg g−1, Cr 130-630 μg g−1, Zn 90-550 μg g−1, Mo 170-230 μg g−1, Cd 20 μg g−1 (in winter) and Pb 130-300 μg g−1 in dry sample. Cd was under the detection limit in summer. The length of digestion time had no effect on the recovery of copper, iron, molybdenum and zinc between 15 and 3 h of digestion.  相似文献   

10.
A novel technique, high temperature headspace liquid-phase microextraction (HS-LPME) with room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) as extractant, was developed for the analysis of dichlorodiphenyltrichloroethane (p,p′-DDT and o,p′-DDT) and its metabolites including 4,4′-dichlorodiphenyldichloroethylene (p,p′-DDE) and 4,4′-dichlorodiphenyldichloroethane (p,p′-DDD) in water samples by high performance liquid chromatography with ultraviolet detection. The parameters such as salt content, sample pH and temperature, stirring rate, extraction time, microdrop volume, and sample volume, were found to have significant influence on the HS-LPME. The conditions optimized for extraction of target compounds were as follows: 35% NaCl (w/v), neutral pH condition, 70 °C, 800 rpm, 30 min, 10 μL [C4MIM][PF6], and 25 mL sample solutions. Under the optimized conditions, the linear range, detection limit (S/N = 3), and precision (R.S.D., n = 6) were 0.3-30 μg L−1, 0.07 μg L−1, and 8.0% for p,p′-DDD, 0.3-30 μg L−1, 0.08 μg L−1, and 7.1% for p,p′-DDT, 0.3-30 μg L−1, 0.08 μg L−1, and 7.2% for o,p′-DDT, and 0.2-30 μg L−1, 0.05 μg L−1, and 6.8% for p,p′-DDE, respectively. Water samples including tap water, well water, snow water, reservoir water, and wastewater were analyzed by the proposed procedure and the recoveries at 5 μg L−1 spiked level were in the range of 86.8-102.6%.  相似文献   

11.
《Analytica chimica acta》2004,507(2):171-178
In the last years, capillary electrophoresis (CE) has gained considerable interest in pharmaceutical laboratories for controlling the chiral purity of drugs. This paper describes a simple and fast method for resolution of propranolol enantiomers by affinity capillary electrophoresis (ACE) using human serum albumin (HSA) as chiral selector. The effect of several experimental variables such as HSA concentration, temperature, chiral selector plug length and addition of organic modifiers, on the separation is evaluated. Complete enantioresolution of R- and S-propranolol was achieved in less than 5 min when the capillary was completely filled with 100 μM HSA solution and the electrophoresis was carried out with 67 mM phosphate buffer (pH 7.4) at 20 kV and 35 °C. Peaks were assigned to each propranolol enantiomer according to their relative affinities to HSA. The proposed method was applied to the analysis of pharmaceutical preparations containing propranolol. Resolution, accuracy, reproducibility, cost and sample throughput of the proposed method make it suitable for quality control of the enantiomeric composition of propranolol in pharmaceuticals.  相似文献   

12.
A capillary electrophoresis (CE) and a high performance liquid chromatography (HPLC) method are described for the simultaneous determination of ethylenediaminetetraacetic acid (EDTA), S,S′-ethylenediaminedisuccinic acid (EDDS) and R,S-iminodisuccinic acid (IDS) complexing agents as their Fe(III) complexes in cosmetics like shower cream and foam bath. The non-biodegradable EDTA is used in combination with biodegradable analogues like EDDS and IDS in many commercial products. The HPLC method involves separation by reversed-phase ion pair chromatography on a C18 column using methanol-formate buffer (20 mM tetrabutylammonium hydrogen sulfate, 15 mM sodium formate adjusted to pH 4.0 with formic acid) (10:90, v/v) as mobile solvent at a flow rate of 0.8 mL min−1 at 24 °C using UV detection at 240 nm. The CE separation was performed in a fused silica capillary of 50 μm i.d. with the total length of 50 cm with a 10 mM MES and MOPSO (pH 5.5) at an applied voltage of −25 kV. The samples were introduced by applying a 50 mbar pressure for 2 s. Absorbances at 215 and 225 nm were monitored for the detection of the complexes. The methodology performance of the two methods was evaluated in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ) and reproducibility. The LOD values obtained from HPLC are low when compared with CE. The applicability of both the methods was demonstrated for the analysis of cosmetic products such as shower cream and foam bath. The results obtained by both CE and HPLC were found to be comparable and in good agreement.  相似文献   

13.
Ping Tong  Lan Zhang  Yu He  Jintian Cheng 《Talanta》2010,82(4):1101-1106
In this paper, a rapid and effective method based on capillary zone electrophoresis (CZE) coupled with electrospray ionization mass spectrometry (ESI-MS) was established for the trace analysis of microcystin (MC) isomers in crude algae sample. The experimental conditions including the composition, acidity and concentration of buffer, separation voltage, injection time, and MS detection parameters were investigated in detail. A capillary separation system was as follows: a uncoated fused-silica capillary tube (50 μm i.d. × 90 cm), 40 mmol L−1 ammonium acetate solution (pH 9.86) as running buffer, 25 kV as separation voltage, 20 kV × 3 s water first and 20 kV × 20 s for sample injection. Mass analysis was performed in ESI source, with sheath gas temperature 150 °C, sheath gas pressure 10 psi, and sheath gas flow 6 L min−1. And sheath liquid was 7.5 mmol L−1 acetic acid in 50% isopropanol-water (3 μL min−1). Protonation and ammonium adduct molecular ions m/z 506.9 (MC-LR) and 532.0 (MC-YR) were used for the quantification of MCs. Under these conditions, two MCs were baseline separated within 9 min, the calibration curves were obtained in the range of 0.11-10.0 μg mL−1 and 0.16-10.5 μg mL−1 for MC-LR and MC-YR, respectively. Meanwhile, limits of detection were 0.05 and 0.08 μg mL−1 for MC-LR and MC-YR, respectively. The recoveries for the two MCs were in the range of 95.8-108%. The developed approach had been successfully applied to the analysis of MCs in crude algae samples.  相似文献   

14.
A simple chiral high-performance liquid chromatography (HPLC) method with ultraviolet (UV) and circular dichroism (CD) detection was developed and validated for measuring benalaxyl enantiomers using (R,R) Whelk-O 1 column. The effects of mobile phase composition and column temperature on the entioseparation were investigated. A CD detector was used to determine the elution order of the enantiomers. Excellent resolution was easily obtained using n-hexane-polar organic alcohols mobile phase. The chiral recognition mechanism was also discussed. Based on the developed chiral HPLC method, enantioselective analysis methods for this fungicide in environment matrix (soil and water) were developed and validated. Good linearities were obtained over the concentration range of 0.25-25 mg L−1 for both enantiomers. Liquid-liquid extraction and solid phase extraction (SPE) were used for the enrichment and cleanup of soil and water samples. Recoveries for the two enantiomers were 79-91% at 0.02, 0.04 and 0.2 mg kg−1 levels from soil, and 89-101% at 0.0025, 0.01 and 0.05 mg L−1 levels from water. Run-to-run and day-to-day assay precisions were below 10% for both enantiomers at concentrations of 0.5, 1 and 5 mg L−1. Individual detection limits of the two enantiomers were both 2 ng. Limits of detection (LOD) were 0.004 mg kg−1 in soil and 0.001 mg L−1 in water.  相似文献   

15.
A simple and rapid HPLC method has been developed using a polysaccharide chiral stationary phase (Chiralpak AD-H) for the resolution of glycidyl tosylate enantiomers. These compounds were obtained by asymmetric epoxidation of allyl alcohol with chiral titanium-tartrate complexes as catalyst after in situ derivatization of the intermediate glycidols. Separations were achieved using two types of mobile phase: a normal-phase (n-hexane), and a polar-phase (methanol or acetonitrile). The influence of the type and concentration of organic modifier in the mobile phase (ethanol or 2-propanol), the flow rate and the column temperature was investigated. In normal-phase mode, the optimized conditions were: n-hexane/ethanol 70/30 (v/v) at a flow rate of 1.2 mL min−1 and 40 °C. In polar-phase mode, the optimized conditions were: methanol at a flow rate of 0.8 mL min−1 and 20 °C. In both cases, analysis time was ≤11 min and the chiral resolution was ≥2. Nevertheless, due to the better Rs obtained in normal-phase mode, only this method was validated to avoid peaks overlapping in real samples. This method was found to be linear in the 5-300 μg mL−1 range (R2 > 0.999) with an LOD of 1.5 μg mL−1 for both glycidyl tosylate enantiomers. Repeatability and intermediate precision at three different concentrations levels were below 0.5 and 7.2% R.S.D. for retention time and area, respectively. This method was applied successfully for the determination of glycidyl tosylate enantiomers after in situ derivatization of glycidols obtained in allylic alcohol asymmetric epoxidation processes with chiral titanium-tartrate complexes as catalysts.  相似文献   

16.
Huahua Bai  Guohong Xie 《Talanta》2010,80(5):1638-1642
Hydrophobic ionic liquid could be dispersed into infinite droplets under driving of high temperature, and then they can aggregate as big droplets at low temperature. Based on this phenomenon a new liquid-phase microextraction for the pre-concentration of lead was developed. In this experiment, lead was transferred into its complex using dithizone as chelating agent, and then entered into the infinite ionic liquid drops at high temperature. After cooled with ice-water bath and centrifuged, lead complex was enriched in the ionic liquid droplets. Important parameters affected the extraction efficiency had been investigated including the pH of working solution, amount of chelating agent, volume of ionic liquid, extraction time, centrifugation time, and temperature, etc. The results showed that the usually coexisting ions containing in water samples had no obvious negative effect on the recovery of lead. The experimental results indicated that the proposed method had a good linearity (R = 0.9951) from 10 ng mL−1 to 200 ng mL−1. The precision was 4.4% (RSD, n = 6) and the detection limit was 9.5 ng mL−1. This novel method was validated by determination of lead in four real environmental samples for the applicability and the results showed that the proposed method was excellent for the future use and the recoveries were in the range of 94.8-104.1%.  相似文献   

17.
A method for simultaneous determination of seven benzodiazepines (BZPs) (flunitrazepam, clonazepam, oxazepam, lorazepam, chlordiazepoxide, nordiazepam and diazepam using N-desalkylflurazepam as internal standard) in human plasma using liquid-liquid and solid-phase extractions followed by high-performance liquid chromatography (HPLC) is described. The analytes were separated employing a LC-18 DB column (250 mm × 4.6 mm, 5 μm) at 35 °C under isocratic conditions using 5 mM KH2PO4 buffer solution pH 6.0:methanol:diethyl ether (55:40:5, v/v/v) as mobile phase at a flow rate of 0.8 mL min−1. UV detection was carried out at 245 nm. Employing LLE, the best conditions were achieved with double extraction of 0.5 mL plasma using ethyl acetate and Na2HPO4 pH 9.5 for pH adjusting. Employing SPE, the best conditions were achieved with 0.5 mL plasma plus 3 mL 0.1 M borate buffer pH 9.5, which were then passed through a C18 cartridge previously conditioned, washed for 3 times with these solvents: 3 mL 0.1 M borate buffer pH 9.5, 4 mL Milli-Q water and 1 mL acetonitrile 5%, finally the BZPs elution was carried with diethyl ether:n-hexane:methanol (50:30:20). In both methods the solvent was evaporated at 40 °C under nitrogen flow. The validation parameters obtained in LLE were linearity range of 50-1200 ng mL−1 plasma (r ≥ 0.9927), limits of quantification of 50 ng mL−1 plasma, within-day and between-day CV% and E% for precision and accuracy lower than 15%, and recovery above 65% for all BZPs. In SPE, the parameter obtained were linearity range of 30-1200 ng mL−1 plasma (r ≥ 0.9900), limits of quantification of 30 ng mL−1 plasma, within-day and between-day CV% and E% for precision and accuracy lower than 15% and recovery above 55% for all BZPs. These extracting procedures followed by HPLC analysis showed their suitable applicability in order to examine one or more BZPs in human plasma. Moreover, it could be suggested that these procedures might be employed in various analytical applications, in special for toxicological/forensic analysis.  相似文献   

18.
This paper reports the development of a new strategy for low-level determination of copper in water samples by using a flow-injection system coupled to solid-phase extraction (SPE) using flame atomic absorption spectrometry (F AAS) as detector. In order to preconcentrate copper from samples, a minicolumn packed with a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis-(4-vinyl-phenyl)-methyl]-pyrrolidine-1-carboxylic acid ethyl ester was used and the synthesis procedure is described. System operation is based on the on-line retention of Cu(II) ions at pH 9.0 ± 0.2 in a such minicolumn with posterior analyte elution with 2 mol l−1 HCl directly to the F AAS nebulizer. The influence of several chemical (sample pH, buffer concentration, HCl eluent concentration and effect of the ionic strength) and flow (sample and eluent flow rates and preconcentration time) variables that could affect the performance of this system were investigated as well as the possible interferents. At optimized conditions, for 2 min of preconcentration time (13.2 ml of sample volume), the system achieved a detection limit of 1.1 μg l−1, a R.S.D. 1% at 20 μg g l−1 and an analytical throughput of 25 h−1, whereas for 4 min of preconcentration time (26.4 ml of sample volume), a detection limit of 0.93 μg l−1, a R.S.D. 5.3% at 5 μg l−1 and a sampling frequency of 13 h−1 were reported.  相似文献   

19.
The present work reports on the synthesis of chemically bonded multiwalled carbon nanotubes (MWCNTs)/fused-silica fibers and their use in solid phase microextraction of seven phenols from water samples coupled with gas chromatography (GC). The synthetic strategy was verified by infrared (IR) spectroscopy and field emission scanning electron microscopy. Adsorption factors (pH, ionic strength, stirring rate, adsorption time and temperature) and desorption factors (time and temperature) of the fibers were systematically investigated. Detection limits to seven phenols were less than 0.05 μg L−1, and their calibration curves were all linear (R2 ≥ 0.9984) in the range from 0.05 to 5000 μg L−1. This method was then utilized to analyze two real water samples from Yellow River and sanitary wastewater, resulting in satisfactory results. Compared with normal solid phase materials, this MWCNTs-bonded fused-silica fibers showed a number of advantages: wide linear range and low detection limit for extracting phenols couple with GC, and good stability in acid, alkali, organic solvents and at high temperature.  相似文献   

20.
A quantitative method of capillary electrophoresis with sample stacking induced by moving reaction boundary (MRB) was developed for sensitive determination of oxymatrine (OMT) and matrine (MT) in rat plasma. The experimental conditions were optimized firstly. Below are the optimized experimental conditions: 20 mM sodium formate solution (HCOONa, adjusted to pH 10.70 by ammonia) as sample solution, 3 min 14 mbar sample injection, 40 mM formic buffer (HCOOH-HCOONa, pH 2.60) as stacking buffer, 7 min 14 mbar injection of stacking buffer, 100 mM HCOOH-HCOONa (pH 4.80) as separation buffer, 73 cm capillary (effective length 64 cm), 21 kV voltage, 210 nm wavelength. Under the optimized conditions, higher than 60-fold sensitivity improvement of the stacking was simply achieved as compared with capillary zone electrophoresis, and the detectable limits obtained for OMT and MT were 0.26 and 0.19 μg mL−1, respectively. Then, numerous demonstrations were carefully performed for the methodological validations of OMT and MT in rate plasma, including high specificity of method, good linearity (r = 0.9993 for OMT, r = 0.9991 for MT), fair wide linear concentration range (1.30-65.00 μg mL−1 for OMT, 0.84-42.00 μg mL−1 for MT), low limit of detection (1.03 μg mL−1 for OMT, 0.38 μg mL−1 for MT), less than 5% intra- and inter-day variance value, and higher than 96% recovery of OMT and MT in plasma. The developed method could be used for the trace analyses of OMT and MT in plasma and was finally used for the investigation on pharmacokinetic study of OMT in rat plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号