首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
The design of gradient simulated moving bed (SMB) chromatographic processes requires an appropriate selection of the chromatographic system followed by the determination of adsorption isotherm parameters in the relevant range of mobile phase conditions. The determination of these parameters can be quite difficult for recombinant target proteins present in complex protein mixtures. The first part of this work includes the estimation of adsorption isotherm parameters for streptokinase and a lumped impurity fraction present in an Escherichia coli cell lysate for a hydrophobic interaction chromatography (HIC) matrix. Perturbation experiments were carried out using a Butyl Sepharose matrix with purified recombinant protein on buffer equilibrated columns as well as with crude cell lysate saturated columns. The Henry constants estimated for streptokinase were found to exhibit in a wide range a linear dependence on the salt concentration in the mobile phase. These parameters were applied in subsequent investigations to design a simulated moving bed (SMB) process capable to purify in a continuous manner recombinant streptokinase from the E. coli cell lysate.  相似文献   

2.
The key factors of enzymatic lysis of cells are the interaction between the enzyme and the cell - catalytic and non-catalytic adsorption of enzyme on cell surface. Here, the studies of lysis of intact Escherichia coli cells by chicken egg white lysozyme were performed. It was found that the ionic strength has a dual effect onto the system. On the one hand, the desorption constant of the enzyme increases with the increase of the solution ionic strength, which results in a better enzyme performance. On the other hand, due to the higher osmosis, the cell lysis rate decreases with the increasing of ionic strength of the system. It was found that pH 8.6 and 30 mM NaCl are optimal conditions for lysis of E. coli cells by lysozyme.  相似文献   

3.
Three techniques (liquid–liquid extraction, packed bed adsorption and expanded bed adsorption) have been compared for the purification of flavonoids from the leaves of Ginkgo biloba L. A crude Ginkgo extract was obtained by refluxing with ethanol for 3 h. The yield of flavonoids achieved by this crude extraction was about 19% (w/w) and the purity of flavonoids in the concentrated extract was between 1.9 and 2.3% (w/w). The crude extract was then dissolved in deionized water and centrifuged where necessary to prepare clarified feedstock for further purification. For the method using liquid–liquid extraction with ethyl acetate, the purity, concentration ratio and yield of flavonoids were 25.4–31.0%, 16–18 and >98%, respectively. For the method using packed bed adsorption, Amberlite XAD7HP was selected as the adsorbent and clarified extract was used as the feedstock. The dynamic adsorption breakthrough curves and elution profiles were measured. For a feedstock containing flavonoids at a concentration of 0.25 mg/mL, the appropriate loading volume to reach a 5% breakthrough point during the adsorption stage was estimated to be 550–600 mL for a packed bed of volume 53 mL and a flow rate of 183 cm/h. The results from the elution stage indicated that the majority of impurities were eluted by ethanol concentrations of 40% (v/v) or below and efficient separation of flavonoids from the impurities could be achieved by elution of the flavonoids with 50–80% ethanol reaching an average purity of ∼25%. The recovery yield of flavonoids using the packed bed purification method was about 60% of the flavonoids present in the clarified feedstock (corresponding to around 30% for the total flavonoids in the unclarified crude extract). For the method using expanded bed adsorption also conducted with Amberlite XAD7HP as the adsorbent, the optimal operation conditions scouted during the packed bed experiments were used but unclarified crude extract could be loaded directly into the column. For an expanded bed with a settled bed height of 30 cm, the loss of flavonoids in the column flow-through was about 30%. The two-step elution protocol again proved to be effective in separating the adsorbed impurities and flavonoids. More than 96% of the bound impurities were completely removed by 40% ethanol in the first elution stage and less than 4% remained in the final product eluted by 90% ethanol in the second elution stage. Also, ∼74% of the adsorbed flavonoids on column (corresponding to 51% of the total flavonoids in the unclarified feedstock) were recovered in the product. In addition to higher recovery yield, the average process time to obtain the same amount of product was decreased in the expanded bed adsorption (EBA) process. The results suggest that the adoption of EBA procedures can greatly simplify the process flow sheet and in addition reduce the cost and time to purify flavonoids from Ginkgo biloba. These results clearly demonstrate the potential for the use of EBA to purify pharmaceuticals from plant sources.  相似文献   

4.
The aim of this paper was to demonstrate a fluorescence measurement method for rapid detection of two bacterial count by using water-soluble quantum dots (QDs) as a fluorescence marker, and spectrofluorometer acted as detection apparatus, while Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were as detection target bacteria. Highly luminescent water-soluble CdSe QDs were first prepared by using thioglycolic acid (TGA) as a ligand, and were then covalently coupled with target bacteria. The bacterial cell images were obtained using fluorescence microscopy. Our results showed that CdSe QDs prepared in water phase were highly luminescent, stable, and successfully conjugated with E. coli and S. aureus. The fluorescence method could detect 102-107 CFU/mL total count of E. coli and S. aureus in 1-2 h and the low detection limit is 102 CFU/mL. A linear relationship of the fluorescence peak intensity and log total count of E. coli and S. aureus have been established using the equation Y = 118.68X − 141.75 (r = 0.9907).  相似文献   

5.
Carotenoids are important natural pigments produced by various microorganisms and plants. Specific deuterium-labeling of these compounds is invaluable in biochemical and physiochemical research. In this paper, preparation of highly deuterated zeaxanthin, lycopene, and β-carotene using engineered Escherichia coli with fully deuterated mevalonate is described. Also described are physico-chemical properties of the obtained deuterated carotenoids.  相似文献   

6.
In the large-scale manufacturing and purification of protein therapeutics, multiple chromatography adsorbent lots are often required due to limited absorbent batch sizes or during replacement at the end of the useful column lifetime. Variability in the adsorbent performance from lot to lot should be minimal in order to ensure that consistent product purity and product quality attributes are achieved when a different lot or lot mixture is implemented in the process. Vendors of chromatographic adsorbents will often provide release specifications, which may possess a narrow range of acceptable values. Despite relatively narrow release specifications, the performance of the adsorbent in a given purification process could still vary from lot to lot. In this case, an alternative use test (one that properly captures the lot to lot variability) may be required to determine an acceptable range of variability for a specific process. In this work, we describe the separation of therapeutic protein monomer and aggregate species using hydrophobic interaction chromatography, which is potentially sensitive to adsorbent lot variability. An alternative use test is formulated, which can be used to rapidly screen different adsorbent lots prior to implementation in a large-scale manufacturing process. In addition, the underlying mechanism responsible for the adsorbent lot variability, which was based upon differences in protein adsorption characteristics, was also investigated using both experimental and modeling approaches.  相似文献   

7.
A two-probe tandem DNA hybridization assay based on time-resolved fluorescence was employed to detect Escherichia coli strain. The amino modified capture probe was covalently immobilized on the common glass slide surface. The Eu(TTA)3(5-NH2-phen) with the characteristics of long lifetime and intense luminescence was labeled with reporter probe. The original extracted DNA samples without the purification and amplification process were directly used in the hybridization assay. The concentration of capture probe, hybridization temperature, hybridization and washing time were optimized. The detection limit is about 1.49 × 103 CFU mL−1E. coli cells, which is comparable to the value of most microbiology methods. The proposed method has the advantages of easy operation, satisfactory sensitivity and specificity, which can provide a promising technique for monitoring the microorganisms.  相似文献   

8.
Polyhydroxyalkanoate (PHA) synthase (PhaC) from Wautersia eutropha was expressed in a wide range of production level in Escherichia coli XL1-Blue cells and its effects on PhaC activity, poly[(R)-3-hydroxybutyrate] [P(3HB)] production and its molecular weights were investigated. The production level of PhaC was controlled both by the amount of chemical inducer (isopropyl-β-d-thiogalactopyranoside, IPTG) added into the medium and the use of different copy number of plasmids. In a flask experiment, as PhaC production level in the cells increased, the PhaC activity also increased in the range of low PhaC concentration. However, PhaC activity did not further increase in the range of high PhaC concentration, probably due to the formation of inclusion body in the cells. The molecular weight of P(3HB) was found to decrease with increasing PhaC activity. This trend was also verified in high cell density cultivation using 10-l jar fermentor. Furthermore, we demonstrated that the use of low copy number plasmid and appropriate induction of PhaC expression were effective in achieving both high productivity and high molecular weight of P(3HB).  相似文献   

9.
The suitability of the use of macroporous adsorbent Amberlite XAD7HP in expanded bed adsorption processes for the isolation of flavonoids from crude extracts of Ginkgo biloba L. has been assessed. The expansion and hydrodynamic properties of expanded beds were investigated and analyzed. The bed expansion as a function of operational fluid velocity was measured and correlated with the Richardson–Zaki equation. Theoretical predictions of the correlation parameters (the terminal settling velocity ut and exponent n) were improved by modifying equations in the literature. Residence time distributions (RTDs) were studied using acetone as a tracer. Three measures of liquid phase dispersion (the height equivalent of theoretical plate, Bodenstein number and axial distribution coefficient) were investigated and compared to values previously obtained with commercial EBA adsorbents developed for protein purification. A suitable bed expansion ratio was found to be 1.25 times the settled bed height, which occurred at a corresponding flow velocity of 183 cm/h. For an initial settled bed height of 42 cm, the mean residence time of liquid in the expanded bed was around 28 min. Under these flow conditions, the axial mixing coefficient Dax was 7.54 × 10−6 m2/s and the Bodenstein number was 28; the number of theoretical plates (N) was 19 and the height equivalent of a theoretical plate (HETP) was 2.77 cm. Rutin trihydrate was used as a model flavonoid for the characterization of the adsorption properties of Amberlite XAD7HP. Adsorption was observed to reach equilibrium within 3 h with 70% of the adsorption capacity being achieved within 30 min. The estimated maximum equilibrium adsorption capacity for rutin was estimated to be 43.0 mg/(g resin) when the results were fitted to Langmuir isotherms. The adsorption performance was not seriously impaired by the physical presence of G. biloba leaf powders. Assessment of the kinetics of the adsorption of rutin revealed that the rate constant for adsorption was only reduced by 15% in the presence of leaf powders at a concentration of 50 mg/mL. The results demonstrated that Amberlite XAD7HP should be suitable for expanded bed adsorption of flavonoids from crude extracts of G. biloba L.  相似文献   

10.
In order to produce a novel keto-carotenoid in Escherichia coli, we introduced the marine bacterial carotenoid ketolase gene (crtW) into pathway-engineered E. coli producing carotenoids of plant origin, which carried the lycopene biosynthesis genes (crtE, crtB, and crtI) from soil bacterium Pantoea ananatis and the liverwort Marchantia polymorpha genes that encode lycopene β-cyclase (MpLCYb), lycopene ε-cyclase (MpLCYe), and β-carotenoid hydroxylase (MpBHY). A novel keto-carotenoid (1) was produced by these carotenoid biosynthesis genes in E. coli along with α-echinenone, adonirubin, and adonixanthin. The structure of 1 was determined as (3S,6′R)-3-hydroxy-β,ε-caroten-4-one based on Uv–vis, MS, 1H NMR, and CD spectral data. This compound was named 4-ketozeinoxanthin and showed anti-tumor-promoting activity.  相似文献   

11.
A two-channel flow injection analysis (FIA) system was developed for the simultaneous on-line monitoring of acetate and glucose during high cell density fed-batch fermentations of recombinant Escherichia coli. Acetate measurement was performed with a modified and optimised version of an existing method, based on acetate diffusion through a gas-diffusion chamber into a stream containing an acid-base indicator. The subsequent decrease in the absorbance was detected with an incorporated photometer. After method optimisation, it was possible to achieve linearity until 10 g/kg with no dilution step and with a detection level of 0.05 g/kg. Although some interferences were found, the performance of the method proved to be sufficiently reliable for on-line control purposes Commercially packed glucose oxidase (GOD) was used for the amperometric measurement of glucose. The method was linear up to 5 g/kg and it was possible to detect concentrations lower than 0.06 g/kg. For these measurements, no significant interferences were detected when the results were compared with other reference methods. The application of a simultaneous parallel configuration of the methods to a high cell density fed-batch E. coli fermentation was tested and reliable results were obtained within a 3 min delay. This information was made available to a supervisory computer running a developed LabVIEW™ programme via an Ethernet network, allowing the immediate implementation of control actions, improving the process performance.  相似文献   

12.
The dependencies on the mobile phase flow velocity of the efficiency of a column packed with shell particles of neat porous silica (Halo) was measured under two different sets of experimental conditions. These conditions corresponded to the retention mechanisms of per   aqueous liquid chromatography (PALC) at low acetonitrile concentrations and of hydrophilic interaction chromatography (HILIC) at high acetonitrile concentrations. The results are compared. Small amounts of a diluted solution of caffeine were injected in order to record the chromatograms under strictly linear conditions. These efficiencies were measured in both water-rich (PALC retention mechanism) and acetonitrile-rich (HILIC mechanism) mobile phases for the same retention factors, between 0.25 and 2.5. The mobile phases were mixtures of acetonitrile and water containing neither supporting salt nor buffer component. At low retention factors, the efficiency of caffeine is better in the PALC than in the HILIC mode. For k=0.5k=0.5, the minimum reduced height equivalent to a theoretical plate (HETP) is close to 2.5 in PALC while it exceeds 5 in HILIC. The converse is true for high retention factors. For k>2.5k>2.5, the HETP is lower in HILIC than in PALC, because the major contribution to band broadening and peak tailing in this latter mode originates from the heterogeneous thermodynamics of retention and eventually restricts column performance in PALC. Most interestingly, the reduced HETP measured in HILIC for caffeine never falls below 4. This suggests that the mass transfer of caffeine between the multilayer adsorbed phase (due to the interactions of the strong solvent and the silanol groups) and the acetonitrile-rich bulk eluent is slow.  相似文献   

13.
Poly(N-isopropylacrylamide)-grafted polymer monolith has been achieved using a surface-initiated atom transfer radical polymerization grafting polymerization within the pores of poly(chloromethylstyrene-divinylbenzene) macroporous monolith contained in a 100 mm × 4.6 mm I.D. stainless steel column. The grafted-poly(N-isopropylacrylamide) on the surface of the grafted monolith that was used as chromatographic stationary phase showed a response to the variation of temperatures and/or salt concentrations. This study focus on its salt concentration responsive property and it has been revealed that the hydrophobicity of the grafted monolith can be adjusted by changing salt concentrations in the range of 0.05-2.0 mol/L. A variety of salts including sodium sulfate, ammonium sulfate and sodium chloride exhibited different effects on the alteration of hydrophobicity of the grafted monolith, and the effect of the salts was in the order of sodium sulfate > ammonium sulfate > sodium chloride. Based on this response to salt concentrations, the grafted monolith was applied in hydrophobic interaction chromatography of proteins, and the base-line separation of a six proteins mixture consisting of cytochrome c, myoglobin, ribonuclease A, bovine serum albumin, ovalbumin and thyroglobulin bovine was achieved by a salt gradient elution.  相似文献   

14.
Carbon nanoparticles (CNPs) (6–18 nm in size) were prepared by refluxing corn stalk soot in nitric acid. The obtained acid-oxidized CNPs are soluble in water due to the existence of carboxylic and hydroxyl groups. 13C NMR measurement shows the CNPs are mainly of sp2 and sp3 carbon structure different from CNPs obtained from candle soot and natural gas soot. Furthermore, these CNPs exhibit unique photoluminescence properties. Interestingly, the CNPs might be exploited to immobilize on the surface of porous silica particles as chromatographic stationary phase. The resultant packing material was evaluated by high-performance liquid chromatography, indicating that the new stationary phase could be used in hydrophilic interaction liquid chromatography (HILIC) and per aqueous liquid chromatography (PALC) modes. The separation of five nucleosides, four sulfa compounds and safflower injection was achieved by using the new column in the HILIC and PALC modes, respectively.  相似文献   

15.
Isomangiferin was isolated from Cyclopia subternata using a multi-step process including extraction, liquid–liquid partitioning, high-speed counter-current chromatography (HSCCC) and semi-preparative reversed-phase high-performance liquid chromatography (HPLC). Enrichment of phenolic compounds in a methanol extract of C. subternata leaves was conducted using liquid–liquid partitioning with ethyl acetate–methanol–water (1:1:2, v/v). The enriched fraction was further fractionated using HSCCC with a ternary solvent system consisting of tert-butyl methyl ether–n-butanol–acetonitrile–water (3:1:1:5, v/v). Isomangiferin was isolated by semi-preparative reversed-phase HPLC from a fraction containing mostly mangiferin and isomangiferin. The chemical structure of isomangiferin was confirmed by LC–high-resolution electrospray ionization MS, as well as one- and two-dimensional NMR spectroscopy.  相似文献   

16.
The development and characterization of a magnetic bead (MB)-quantum dot (QD) nanoparticles based assay capable of quantifying pathogenic bacteria is presented here. The MB-QD assay operates by having a capturing probe DNA selectively linked to the signaling probe DNA via the target genomic DNA (gDNA) during DNA hybridization. The signaling probe DNA is labeled with fluorescent QD565 which serves as a reporter. The capturing probe DNA is conjugated simultaneously to a MB and another QD655, which serve as a carrier and an internal standard, respectively. Successfully captured target gDNA is separated using a magnetic field and is quantified via a spectrofluorometer. The use of QDs (i.e., QD565/QD655) as both a fluorescence label and an internal standard increased the sensitivity of the assay. The passivation effect and the molar ratio between QD and DNA were optimized. The MB-QD assay demonstrated a detection limit of 890 zeptomolar (i.e., 10−21 mol L−1) concentration for the linear single stranded DNA (ssDNA). It also demonstrated a detection limit of 87 gene copies for double stranded DNA (dsDNA) eaeA gene extracted from pure Escherichia coli (E. coli) O157:H7 culture. Its corresponding dynamic range, sensitivity, and selectivity were also presented. Finally, the bacterial gDNA of E. coli O157:H7 was used to highlight the MB-QD assay's ability to detect below the minimum infective dose (i.e., 100 organisms) of E. coli O157:H7 in water environment.  相似文献   

17.
Polysaccharides from a crude extract of Auricularia polytricha were separated by high-speed countercurrent chromatography (HSCCC). The separation was performed with an aqueous two-phase system of PEG1000–K2HPO4–KH2PO4–H2O (0.5:1.25:1.25:7.0, w/w). The crude sample (2.0 g) was successfully separated into three polysaccharide components of AAPS-1 (192 mg), AAPS-2 (137 mg), and AAPS-3 (98 mg) with molecular weights of 162, 259, and 483 kDa, respectively. These compounds were tested for growth inhibition of transplanted S180 sarcoma in mice. AAPS-2 had an inhibition rate of 40.4%. The structure of AAPS-2 was elucidated from partial hydrolysis, periodate oxidation, acetylation, methylation analysis, and NMR spectroscopy (1H, 13C). These results showed AAPS-2 is a polysaccharide with a backbone of (1 → 3)-linked-β-d-glucopyranosyl and (1 → 3, 6)-linked-β-d-glucopyranosyl residues in a 2:1 ratio, and has one terminal (1→)-β-d-glucopyranosyl at the O-6 position of (1→3, 6)-linked-β-d-glucopyranosyl of the main chain.  相似文献   

18.
A combinative method using high-speed counter-current chromatography (HSCCC) and thin layer chromatography (TLC) as an antioxidant autographic assay was developed to separate antioxidant components from the fruits of Psoralea corylifolia. Under the guidance of TLC bioautography, eight compounds including five flavonoids and three coumarins were successfully separated from the fruits of P. corylifolia by HSCCC with an optimized two-phase solvent system, n-hexane–ethyl acetate–methanol–water (1:1.1:1.3:1, v/v/v/v). The separation produced 5.91 mg psoralen, 6.26 mg isopsoralen, 3.19 mg psoralidin, 0.92 mg corylifol A, and 2.43 mg bavachinin with corresponding purities of 99.5, 99.8, 99.4, 96.4, and 99.0%, as well as three sub-fractions, in a single run from 250 mg ethyl acetate fraction of P. corylifolia extract. Following an additional clean-up step by preparative TLC, 0.4 mg 8-prenyldaidzein (purity 91.7%), 4.18 mg neobavaisoflavone (purity 97.4%) and 4.36 mg isobavachalcone (purity 96.8%) were separated from the three individual sub-fractions. The structures of the isolated compounds were identified by 1H NMR and 13C NMR. The results of antioxidant activity estimation by electron spin resonance (ESR) method showed that psoralidin was the most active antioxidant with an IC50 value of 44.7 μM. This is the first report on simultaneous separation of eight compounds from P. corylifolia by HSCCC.  相似文献   

19.
The thermal stability of the Aes acetyl esterase from Escherichia coli has been investigated by means of differential scanning calorimetry and circular dichroism measurements. The calorimetric curves show a denaturation temperature of 68 °C for Aes and 61 °C for the single point mutant V20D-Aes. The same values are obtained from CD denaturation curves of the two proteins recorded in both the far-UV and near-UV regions. Even if the denaturation process is irreversible and characterized by a single calorimetric peak and a single inflection point in both far- and near-UV CD curves, the overall data indicate that the process is more complex than a two-state transition. This is in line with the presence of two structural domains in the 3D model of Aes, according to homology modelling. A comparison of the thermal stability of Aes with those of the homologous thermophilic EST2 and hyperthermophilic AFEST suggests that the optimization of charge-charge interactions should not be so effective in the case of the mesophilic enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号