首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, high-efficiency LC–MS/MS separations of complex proteolytic digests are demonstrated using 50 mm, 250 mm, and 1 m long poly(styrene-co-divinylbenzene) monolithic capillary columns. The chromatographic performance of the 50 and 250 mm monoliths was compared at the same gradient steepness for gradient durations between 5 and 150 min. The maximum peak capacity of 400 obtained with a 50 mm column, increased to 485 when using the 250 mm long column and scaling the gradient duration according column length. With a 5-fold increase in column length only a 20% increase in peak capacity was observed, which could be explained by the larger macropore size of the 250 mm long monolith. When taking into account the total analysis time, including the dwell time, gradient time and column equilibration time, the 50 mm long monolith yielded better peptide separations than the 250 mm long monolithic column for gradient times below 80 min (nc = 370). For more demanding separation the 250 mm long monolith provided the highest peak production rate and consequently higher sequence coverage. For the analysis of a proteolytic digest of Escherichia coli proteins a monolithic capillary column of 1 m in length was used, yielding a peak capacity of 1038 when applying a 600 min gradient.  相似文献   

2.
Fekete S  Fekete J 《Talanta》2011,84(2):416-423
The performance of 5 cm long narrow-bore columns packed with 2.6-2.7 μm core-shell particles and a column packed with 1.7 μm totally porous particles was compared in very fast gradient separations of polar neutral active pharmaceutical compounds. Peak capacities as a function of flow-rate and gradient time were measured. Peak capacities around 160-170 could be achieved within 25 min with these 5 cm long columns. The highest peak capacity was obtained with the Kinetex column however it was found that as the flow-rate increases, the peak capacity of the new Poroshell-120 column is getting closer to that obtained with the Kinetex column. Considering the column permeability, peak capacity per unit time and per unit pressure was also calculated. In this comparison the advantage of sub-3 μm core-shell particles is more significant compared to sub-2 μm totally porous particles. Moreover it was found that the very similar sized (dp = 2.7 μm) and structured (ρ = 0.63) new Poroshell-120 and the earlier introduced Ascentis Express particles showed different efficiency. Results obtained showed that the 5 cm long narrow bore columns packed with sub-3 μm core-shell particles offer the chance of very fast and efficient gradient separations, thus these columns can be applied for fast screening measurements of routine pharmaceutical analysis such as cleaning validation.  相似文献   

3.
Monolithic columns are widely used in shotgun proteome analysis. However, it is difficult to increase the separation capability and proteome coverage by using conventionally organic polymer-based monolithic column due to the difficulty of controlling homogeneity of the overall pore structure (both pores and microglobules), which leads to relatively low column efficiency. Therefore, we studied the effect of constitute and percentage of porogenic solvent, functional monomer, column length, and separation gradient on the peak capacity and proteome coverage by methacrylate-based reversed phase monolithic columns. It was demonstrated that the porous property of the hydrophobic monolith, which was mainly determined by the porogenic solvent, was crucial to the proteome coverage when similar methacrylate monomer was utilized and a ternary porogenic solvent was adopted to prepare C12 monolithic column with relatively homogeneous overall pore structure. It was also shown that high proteome coverage could be reliably obtained with online multidimensional separation using totally monolithic columns system with the length of analytical column at 85 cm and reversed phase separation gradient at 210 min.  相似文献   

4.
To obtain the best compromise between peak capacity and analysis time in one-dimensional and two-dimensional (2D) liquid chromatography (LC), column technology and operating conditions were optimized. The effects of gradient time, flow rate, column temperature, and column length were investigated in one-dimensional reversed-phase (RP) gradient nano-LC, with the aim of maximizing the peak per unit time for peptide separations. An off-line two-dimensional LC approach was developed using a micro-fractionation option of the autosampler, which allowed automatic fractionation of peptides after a first-dimension ion-exchange separation and re-injection of the fractions onto a second-dimension RP nano-LC column. Under the applied conditions, which included a preconcentration/desalting time of 5 min, and a column equilibration time of 12.5 min, the highest peak capacity per unit time in the 2D-LC mode was obtained when applying a short (10 min) first-dimension gradient and second-dimension RP gradients of 20 min duration. For separations requiring a maximum peak capacity of 375, one-dimensional LC was found to be superior to the off-line strong cation-exchange/×/RPLC approach in terms of analysis time. Although a peak capacity of 450 could be obtained in one-dimensional LC when applying 120-min gradients on 500-mm long columns packed with 3-μm particles, for separations requiring a peak capacity higher than 375 2D-LC experiments provide a higher peak capacity per unit time. Finally, the potential of off-line 2D-LC coupled to tandem mass spectrometry detection is demonstrated with the analysis of a tryptic digest of a mixture of nine proteins and an Escherichia coli digest.  相似文献   

5.
Two polystyrene-based capillary monolithic columns of different length (50 and 250 mm) were used to evaluate the effects of column length on gradient separation of protein digests. A tryptic digest of a 9-protein mixture was used as a test sample. Peak capacities were determined from selected extracted ion chromatograms, and tandem mass spectrometry data were used for database matching using the MASCOT search engine. Peak capacities and protein identification scores were higher for the long column with all gradients. Peak capacities appear to approach a plateau for longer gradient times; maximum peak capacity was estimated to be 294 for the short column and 370 for the long column. Analyses with similar gradient slope produced a ratio of the peak capacities of 3.36 for the long and the short column, which is slightly higher than the expected value of the square root of the column length ratio. The use of a longer monolith improves peptide separation, as reflected by higher peak capacity, and also increases protein identification, as observed from higher identification scores and a larger number of identified peptides. Attention has also been paid to the peak production rate (PPR, peak capacity per unit time). For short analysis times, the short column produces a higher PPR, while for analysis times longer than 40 min, the PPR of the 250-mm column is higher.  相似文献   

6.
Porous layer open tubular (PLOT) polystyrene divinylbenzene columns have been used for separating intact proteins with gradient elution. The 10 μm I.D. × 3 m columns were easily coupled to standard liquid chromatography–mass spectrometry (LC–MS) instrumentation with commercially available fittings. Standard proteins separated on PLOT columns appeared as narrow and symmetrical peaks with good resolution. Average peak width increased linearly with gradient time (tG) from 0.14 to 0.33 min (tG 20 and 120 min, respectively) using a 3 m column. With shorter columns, peak widths were larger and increased more steeply with gradient time. Theoretical peak capacity (nc) increased with column length (tested up to 3 m). The nc increased with tG until a plateau was reached. The highest peak capacity achieved (nc = 185) was obtained with a 3 m column, where a plateau was reached with tG 90 min. The within- and between column retention time repeatabilities were below 0.6% and below 2.5% (relative standard deviation, RSD), respectively. The carry-over following injection of 0.5 ng per protein was less than 1.1%. The retention time dependence on column temperature was investigated in the range 20–50 °C. Proteins in a skimmed milk sample were separated using the method.  相似文献   

7.
Sponge-like material was utilized as novel chromatographic media for high throughput analyses. The pore size of the sponge-like material was several dozen micrometer, and was named spongy monolith because it consists of continuous structured copolymers, which was made of poly(ethylene-co-vinyl acetate), such as monolithic materials including silica monoliths and organic polymer monoliths. The spongy monolith was packed into a stainless steel column (100 mm × 4.6 mm I.D.) and evaluated in liquid chromatography (LC) with an on-line column-switching LC concentration system. The results indicate that the packed column could be used with high flow rates and low back pressure (9.0 mL/min at 0.5 MPa). Furthermore, bisphenol A was quantitatively recovered by on-line column-switching LC concentration with the spongy monolithic column. Additionally, the adsorption capacity and physical strength of the media was enhanced via chemical modification of spongy monoliths using glycerol dimethacrylate. The results compared with original spongy monolith demonstrated that a higher adsorption capacity was achieved on a shorter column, and a stable low back pressure was obtained at high throughput elution even with a longer column.  相似文献   

8.
An on-column electrochemical microdetector was used to determine accurately the radial distribution of the mobile phase velocity and of the column efficiency at the exit of three common analytical columns, namely a 100 mm × 4.6 mm C18 bonded silica-based monolithic column, a 150 mm × 4.6 mm column packed with 2.7 μm porous shell particles of C18 bonded silica (HALO), and a 150 mm × 4.6 mm column packed with 3 μm fully porous C18 bonded silica particles (LUNA). The results obtained demonstrate that all three columns are not radially homogeneous. In all three cases, the efficiency was found to be lower in the wall region of the column than in its core region (the central core with a radius of 1/3 the column inner radius). The decrease in local efficiency from the core to the wall regions was lower in the case of the monolith (ca. 25%) than in that of the two particle-packed columns (ca. 35–50%). The mobile phase velocity was found to be ca. 1.5% higher in the wall than in the core region of the monolithic column while, in contrast, it was ca. 2.5–4.0% lower in the wall region for the two particle-packed columns.  相似文献   

9.
The gain in separation efficiency for protein digests using long monolithic columns has been evaluated for a LC‐MS system with capillary monolithic columns of different lengths (150 and 750 mm). A mixture of BSA, α‐casein and β‐casein tryptic digests was used as a test sample. Peak capacity and productivity (peak capacity per unit time) were determined from base peak chromatograms and MS/MS data were used for protein identification by MASCOT database searching. Peak capacity and protein identification scores were higher for the long column. Analyses with similar gradient slope for the two columns produced ratios of the peak capacities that were slightly higher than the expected value of the square root of the column length ratio. Peak capacity ratios varied from 2.7 to 4.0 for four different gradient slopes, while protein identification scores were 2–4 times higher for the long column. Similar values were obtained for the productivity of both columns and the highest productivity was obtained at gradient times of 45 and 75 min for the short and long column, respectively. The use of long monolithic columns improves peptide separation and increases reliability of protein identification for complex digests, especially if longer gradients are chosen.  相似文献   

10.
An epoxy-based monolith has been developed for use as hydrophilic support in bioseparation. This monolith is produced by self-polymerization of polyglycerol-3-glycidyl ether in organic solvents as porogens at room temperature within 1 h. One receives a highly cross-linked structure that provides useful mechanical properties. The porosity and pore diameter can be controlled by varying the composition of the porogen. In this work, an epoxy-based monolith with a high porosity (79%) and large pore size (22 μm) is prepared and used in affinity capturing of bacterial cells. These features allow the passage of bacterial cells through the column. As affinity ligand polymyxin B is used, which allows the binding of gram-negative bacteria. The efficiency of the monolithic affinity column is studied with Escherichia coli spiked in water. Bacterial cells are concentrated on the column at pH 4 and eluted with a recovery of 97 ± 3% in 200 μL by changing the pH value without impairing viability of bacteria. The dynamic capacity for the monolithic column is nearly independent of the flow rate (4 × 109 cells/column). Thereby, it is possible to separate and enrich gram-negative bacterial cells, such as E. coli, with high flow rates (10 mL/min) and low back pressure (<1 bar) in a volume as low as 200 μL compatible for real-time polymerase chain reaction, microarray formats, and biosensors.  相似文献   

11.
The UHPLC strategy which combines sub-2 μm porous particles and ultra-high pressure (>1000 bar) was investigated considering very high resolution criteria in both isocratic and gradient modes, with mobile phase temperatures between 30 and 90 °C. In isocratic mode, experimental conditions to reach the maximal efficiency were determined using the kinetic plot representation for ΔPmax = 1000 bar. It has been first confirmed that the molecular weight of the compounds (MW) was a critical parameter which should be considered in the construction of such curves. With a MW around 1000 g mol−1, efficiencies as high as 300,000 plates could be theoretically attained using UHPLC at 30 °C. By limiting the column length to 450 mm, the maximal plate count was around 100,000. In gradient mode, the longest column does not provide the maximal peak capacity for a given analysis time in UHPLC. This was attributed to the fact that peak capacity is not only related to the plate number but also to column dead time. Therefore, a compromise should be found and a 150 mm column should be preferentially selected for gradient lengths up to 60 min at 30 °C, while the columns coupled in series (3× 150 mm) were attractive only for tgrad > 250 min. Compared to 30 °C, peak capacities were increased by about 20–30% for a constant gradient length at 90 °C and gradient time decreased by 2-fold for an identical peak capacity.  相似文献   

12.
For the analysis of protein digests, the peak capacity in reversed-phase liquid chromatography is of paramount importance. A univariate method to maximize the peak capacity as developed by Wang et al. (Anal Chem 78:3406–3416, 20) has been applied and tested for a monolithic RP-18 silica capillary column. In their method, using model peptides representing a bovine serum albumin digest, the gradient time and temperature are kept constant while the flow rate and eluent strength are varied. Despite our criticism on the fixed starting conditions, a long gradient time leading to an unnecessary long analysis time and a high temperature leading to possible degradation products in the chromatogram, and the peak capacity as the only optimization parameter this fast and simple optimization strategy turns out to be applicable to capillary monolithic columns. Furthermore, the influence of the peak capacity on a second optimization parameter, the MS protein identification score, is examined. The procedure is also used to enhance the performance of two popular types of monolithic capillary LC columns (silica-C18 and poly(styrene–divinylbenzene)) of the same length for the analysis of protein digests. Comparison of both columns show that the calculated chromatographic parameters, like productivity and peak capacity, and identification score for both columns are about the same. For a more complicated nine-protein digest the performance of the silica monolith is slightly better.  相似文献   

13.
A fast ion chromatographic system is described which uses shorter column lengths and compares various eluent profiles in order to maximise the performance without sacrificing the chromatographic resolution. Both isocratic and gradient elution profiles were considered to find the most efficient mode of separation. The separation and determination of seven target anions (chloride, chlorate, nitrate, chromate, sulfate, thiocyanate and perchlorate) was achieved using a short (4 mm ID, 50 mm long) column packed with Dionex AS20 high-capacity anion exchange material. A hydroxide eluent was used at an initial concentration of 25 mM (at a flow-rate of 1.0 mL/min) and two performance maxima were found. The maximum efficiency occurred at a normalised gradient ramp rate of 5 mM/t0, resulting in a peak capacity of 16, while the fastest separation (<3 min) occurred at a normalised ramp rate of 30 mM/t0. The retention time, peak width and resolution using the different eluent profiles on varying column lengths is also compared. Further investigations in this study determined that the highest peak capacity separation under gradient conditions could be approximated using an isocratic separation. The advantage of using this novel approach to approximate the maximum efficiency separation removes the need for column re-equilibration that is required for gradient elution resulting in faster analyses and enhanced sample throughput, with benefits in particular for multidimensional chromatography.  相似文献   

14.
Yang C  Wei Y  Zhang Q  Zhang W  Li T  Hu H  Zhang Y 《Talanta》2005,66(2):472-478
In this study, a 38 mL monolith with homogeneous porous structure was produced by a single polymerization from glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) in the presence of porogens and an initiator. The uniform temperature distribution within the reaction system was achieved by adding reactant mixture continuously and enhancing the heat transfer ability of the polymerization system. Homogeneous porous structure in the monolith was proved by SEM and the pore size distribution profiles measured by mercury intrusion porosimetry. Experimental results from proteins separation indicated that the dynamic capacity and resolution of radial flow monolithic column were independent of flow rates. Furthermore, the pressure drop on the column was linearly dependent on the flow rate and did not exceed 1.7 MPa even at a flow rate of 50 mL/min, which proved that the prepared monolith could be used in the quick separation and preparation of biopolymers.  相似文献   

15.
The present study focuses on the evaluation of 1.0 mm i.d. (internal diameter) columns on a commercial Ultra-High Pressure system. These systems have been developed specifically to operate columns with small volumes, typically 2.1 mm i.d., by reducing extra-column volume dispersion. The use of columns with smaller i.d. results in a reduced solvent consumption and required sample volume. The evaluation of the columns was carried out with samples containing neutral and pharmaceutical compounds. In isocratic mode, the extra-column volume produced additional band broadening leading to poor performances compared to equivalent 2.1 mm i.d. columns. By increasing the length of the column, the influence of the extra-column bandspreading could be reduced and 75,000 plates were obtained when four columns were coupled. In gradient mode, the effect of the extra-column contribution on efficiency was limited and about 80% of the performance of the 2.1 mm i.d. columns was obtained. Optimum conditions in gradient mode were further investigated by changing flow rate, gradient time and column length. A different approach of the calculation of peak capacity was also considered for the comparison of the influence of these different parameters.  相似文献   

16.
Optimisation of peak capacity is an important strategy in gradient liquid chromatography (LC). This can be achieved by using either long columns or columns packed with small particles. Monolithic columns allow the use of long columns at relatively low back-pressure. The gain in peak capacity using long columns was evaluated by the separation of a tryptic bovine serum albumin digest with an LC–UV–mass spectrometry (MS) system and monolithic columns of different length (150 and 750 mm). Peak capacities were determined from UV chromatograms and MS/MS data were used for Mascot database searching. Analyses with a similar gradient slope for the two columns produced ratios of the peak capacities that were close to the expected value of the square root of the column length ratio. Peak capacities of the short column were 12.6 and 25.0 with 3 and 15 min gradients, respectively, and 29.7 and 41.0 for the long column with 15 and 75 min gradients, respectively. Protein identification scores were also higher for the long column, 641 and 750 for the 3- and 15-min gradients with the short column and 1,376 and 993 for the 15- and 75-min gradients with the long column. Thus, the use of long monolithic columns provides improved peptide separation and increased reliability of protein identification.  相似文献   

17.
A silica monolithic capillary column was linked to an open capillary of the same internal diameter via a Teflon sleeve to form a duplex column to investigate the combination of chromatography and electrophoresis in the mode of electrically assisted capillary liquid chromatography (eCLC). Using a commercial CE instrument with an 8.5 cm long, 100 μm i.d. reversed phase silica monolithic section and a window 1.5 cm beyond the end of this in a 21.5 cm open section, a minimum plate height of 9 μm was obtained in capillary liquid chromatography (CLC) mode at a low driving pressure of 50 psi. In eCLC mode, high speed and high resolution separations of acidic and basic compounds were achieved with selectivity tuning based on the flexible combination of pressure (0–100 psi) and voltage. Taking advantage of the excellent permeability of silica monolithic columns, use of a step flow gradient enabled elution of compounds with different charge state.  相似文献   

18.
Various recent wide-pore reversed-phase stationary phases were studied for the analysis of intact monoclonal antibodies (mAbs) of 150 kDa and their fragments possessing sizes between 25 and 50 kDa. Different types of column technology were evaluated, namely, a prototype silica-based inorganic monolith containing mesopores of ~250 Å and macropores of ~?1.1 μm, a column packed with 3.6 μm wide-pore core-shell particles possessing a wide pore size distribution with an average around 200 Å and a column packed with fully porous 1.7 μm particles having pore size of ~300 Å. The performance of these wide-pore materials was compared with that of a poly(styrene–divinyl benzene) organic monolithic column, with a macropore size of approximately 1 μm but without mesopores (stagnant pores). A systematic investigation was carried out using model IgG1 and IgG2 mAbs, namely rituximab, panitumumab, and bevacizumab. Firstly, the recoveries of intact and reduced mAbs were compared on the two monolithic phases, and it appeared that adsorption was less pronounced on the organic monolith, probably due to the difference in chemistry (C18 versus phenyl) and the absence of mesopores (stagnant zones). Secondly, the kinetic performance was investigated in gradient elution mode for all columns. For this purpose, peak capacities per meter as well as peak capacities per time unit and per pressure unit (PPT) were calculated at various flow rates, to compare performance of columns with different dimensions. In terms of peak capacity per meter, the core-shell 3.6 μm and fully porous 1.7 μm columns outperformed the two monolithic phases, at a temperature of 60 °C. However, when considering the PPT values, the core-shell 3.6 μm column remained the best phase while the prototype silica-based monoliths became very interesting, mostly due to a very high permeability compared with the organic monolith. Therefore, these core-shell and silica-based monolith provided the fastest achievable separation. Finally, at the maximal working temperature of each column, the core-shell 3.6 μm column was far better than the other one, because it is the only one stable up to 90 °C. Lastly, the loading capacity was also measured on these four different phases. It appeared that the organic monolith was the less interesting and rapidly overloaded, due to the absence of mesopores. On the other hand, the loading capacity of prototype silica-based monolith was indeed reasonable.  相似文献   

19.
An approach for rapid optimization of dual-mode gradient high performance liquid chromatography (HPLC) by response surface methodology (RSM) was developed for fast simultaneous separation of hydrophilic and hydrophobic components in Radix et Rhizoma Salviae Miltiorrhizae (Danshen) and its preparations. The aim of this study was to achieve a high throughput RSM optimization using a short ultra-high performance liquid chromatographic (UHPLC) column to simultaneously optimize flow rate and solvent gradient, and then transfer the optimized method to conventional HPLC for routine analytical purposes. The optimization was designed with Box Behnken design (BBD) and the global Derringer's desirability was used for describing the multicriteria response variables. Sixty-two designed experiments were performed by UHPLC with a short sub-2 μm column (2.1 mm × 50 mm, 1.7 μm) and a total running time of only 5 h. The predicted gradient profile was further transferred to a long UHPLC column (2.1 mm × 100 mm, 1.7 μm) and a conventional HPLC columns (2.1 mm × 100 mm, 3.5 μm and 4 mm × 100 mm, 5 μm, respectively). Compared to the published methods, the newly developed dual-mode gradient is faster and more efficient at simultaneously separating hydrophilic and hydrophobic components in Danshen and its preparations.  相似文献   

20.
In the Sequential Injection Chromatography (SIC) only monolithic columns for chromatographic separations have been used so far. This article presents the first use of fused-core particle packed column in an attempt to extend of the chromatographic capabilities of the SIC system. A new fused-core particle column (2.7 μm) Ascentis® Express C18 (Supelco™ Analytical) 30 mm × 4.6 mm brings high separation efficiency within flow rates and pressures comparable to monolithic column Chromolith® Performance RP-18e 100-3 (Merck®) 100 mm × 3 mm. Both columns matches the conditions of the commercially produced SIC system - SIChrom™ (8-port high-pressure selection valve and medium-pressure Sapphire™ syringe pump with 4 mL reservoir - maximal work pressure 1000 PSI) (FIAlab®, USA). The system was tested by the separation of four estrogens with similar structure and an internal standard - ethylparaben. The mobile phase composed of acetonitrile/water (40/60 (v/v)) was pumped isocratic at flow rate 0.48 mL min−1. Spectrophotometric detection was performed at wavelength of 225 nm and injected volume of sample solutions was 10 μL. The chromatographic characteristics of both columns were compared. Obtained results and conclusions have shown that both fused-core particle column and longer narrow shaped monolithic column bring benefits into the SIC method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号