首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The influence of the column hold-up time measurement accuracy on the determination of equilibrium isotherms by classical frontal analysis and the prediction of overloaded elution band profiles were investigated. The ideal model of chromatography in combination with a Langmuir isotherm was used. Breakthrough curves and overloaded elution profiles were computer generated with a known hold-up time value (true hold-up time). Then these data were evaluated the same way as it is done with experimental chromatographic data where the true hold-up time is unknown, i.e. to determine the equilibrium isotherm by the frontal analysis procedure, to fit the isotherm data to the Langmuir model and then to predict chromatographic band profiles using, e.g. the ideal model of chromatography. A comparison of overloaded elution profiles obtained with different deviations of the hold-up time from its true value shows that the effect of its measurement error is significant in preparative liquid chromatography because the isotherm is usually strongly nonlinear in this case.  相似文献   

2.
A bi-dimensional (non-orthogonal) chromatographic system made of two columns of different length (longer along the first direction and shorter on the second) but packed with identical (or similar) materials has been employed to perform automated on-line fraction analysis and peak deconvolution of multicomponent overloaded band profiles. Multicomponent overloaded peaks, eluted from the first column, are sampled through a remotely-controlled switching valve and fractions are injected, under analytical conditions, directly into the second direction. This set-up serves a twofold purpose. First of all, it has been possible to use linear calibration curves for detector calibration (DC). Secondly, since single component peaks were resolved on the second direction, individual concentration profiles have been obtained beneath the envelop of overlapping bands. All the information necessary to operate the bi-dimensional system can be achieved by analyzing the chromatographic behavior of the mixture on the shorter column under linear conditions. Therefore, solutions of unknown concentration can be prepared and their composition reconstructed with a simple chromatographic run. Two- and three-component overloaded mixtures have been employed to validate the system.  相似文献   

3.

The inverse method is a numerical method for fast estimation of adsorption isotherm parameters directly from a few overloaded elution profiles and it was recently extended to adsorption isotherm acquisition in gradient elution conditions. However, the inverse method in gradient elution is cumbersome due to the complex adsorption isotherm models found in gradient elution. In this case, physicochemically correct adsorption models have very long calculation times. The aim of this study is to investigate the possibility of using a less complex adsorption isotherm model, with fewer adjustable parameters, but with preserved/acceptable predictive abilities. We found that equal or better agreement between experimental and predicted elution profiles could be achieved with less complex models. By being able to select a model with fewer adjustable parameters, the calculation times can be reduced by at least a factor of 10.

  相似文献   

4.
The Reversed-phase (RP) gradient elution chromatography of nociceptin/orphanin FQ (N/OFQ), a neuropeptide with many biological effects, has been modeled under linear and non-linear conditions. In order to do this, the chromatographic behavior has been studied under both linear and nonliner conditions under isocratic mode at different mobile phase compositions--ranging from 16 to 19% (v/v) acetonitrile (ACN) in aqueous trifluoracetic acid (TFA) 0.1% (v/v)-on a C-8 column. Although the range of mobile phase compositions investigated was quite narrow, the retention factor of this relatively small polypeptide (N/OFQ is a heptadecapeptide) has been found to change by more than 400%. In these conditions, gradient operation resulted thus to be the optimum approach for non-linear elution. As the available amount of N/OFQ was extremely reduced (only a few milligrams), the adsorption isotherms of the peptide, at the different mobile phase compositions examined, have been measured through the so-called inverse method (IM) on a 5 cm long column. The adsorption data at different mobile phase compositions have been fitted to several models of adsorption. The dependence of the isotherm parameters on the mobile phase composition was modeled by using the linear solvent strength (LSS) model and a generalized Langmuir isotherm that includes the mobile phase composition dependence. The overloaded gradient separation of N/OFQ has been modeled by numerically solving the equilibrium-dispersive (ED) model of chromatography under a selected gradient elution mode, on the basis of the previously determined generalized Langmuir isotherm. The agreement between theoretical calculations and experimental overloaded band profiles appeared reasonably accurate.  相似文献   

5.
The competitive adsorption behavior of the binary mixture of phenetole (ethoxy-benzene) and propyl benzoate in a reversed-phase system was investigated. The adsorption equilibrium data of the single-component systems were acquired by frontal analysis. The same data for binary mixtures were acquired by the perturbation method. For both compounds, the single-component isotherm data fit best to the multilayer BET model. The experimental overloaded band profiles are in excellent agreement with the profiles calculated with either the general rate model or the modified transport-dispersive models. The competitive adsorption data were modeled using the ideal adsorbed solution (IAS) theory. The numerical values of the coefficients were derived by fitting the retention times of the perturbation pulses to those calculated using the IAS theory compiled with the coherence conditions. Finally, the elution profiles of binary mixtures were recorded. They compared very well with those calculated. As a characteristic feature of this case, an unusual retainment effect of the chromatographic band of the more retained component by the less retained one was observed. The combination of the General Rate Model and the adsorption isotherm model allowed an accurate prediction of the band profiles.  相似文献   

6.
The adsorption isotherm was determined for phenol in methanol/water on a C-8 stationary phase using frontal analysis in staircase mode, assuming different total column porosities, from 1 to 87%. Each set of adsorption isotherm data, with a certain column porosity, was fitted to various adsorption models and the generated parameters were used to calculate overloaded elution band profiles that were compared with experiments. It was found that the bi-Langmuir model had an optimum fit for a porosity that corresponds well with the value found experimentally. The adsorption energy distribution (AED) calculations and error analysis confirmed a bimodal energy distribution. It was also found that band profiles can be accurately predicted with a quite arbitrary chosen porosity, under prerequisite that a wrong but flexible adsorption model is chosen instead of the correct one. The latter result is very useful for quick optimizations of preparative separations where the exact value of the column porosity is not available.  相似文献   

7.
Single-component adsorption isotherm data of l-tryptophan on a C(18)-bonded silica column were acquired by frontal analysis (FA), with aqueous mobile phases containing 5% of acetonitrile at five different temperatures between 23 and 62 degrees C. The non-linear fitting of these data provided the bi-Moreau model for all temperatures as the best isotherm model. The inverse method (IM) was used to derive the parameters at these temperatures from the parameters of the 25 degrees C isotherm. The adsorption constants and the saturation capacities of the low and high-energy sites decreases by increasing the temperature, while the adsorbate-adsorbate parameters of both sites increase. An excellent agreement was found between the experimental and calculated overloaded band profiles at all the temperatures used. The breakthrough curves obtained and the overloaded band profiles obtained were found to have different shapes according to the range of concentration studied and the temperatures. At low concentration 0.05-0.5 g/L the breakthrough curves and the overloaded band profiles have a front shock and diffuse rear, which indicates langmuirian behavior, but at intermediate 1-2 g/L and high concentration 8 g/L they start to have diffuse fronts and shocks at the rear or more than one shock at the rear which indicates non-langmuirian behavior. At 23 degrees C the isotherm has another langmuirian part, which appears at high concentration. The behavior of the breakthrough curves is explained by the shape of the isotherm in which all of the isotherms have a langmuirian part (the isotherm is concave upward) and an antilangmuirian part (the isotherm is concave downward). The temperature affected the breakthrough curves by decreasing the time of the appearance of the fronts for all concentration ranges studied, and by decreasing the time difference between the highest concentration and lowest concentration of the fronts, especially the low concentration range at 0.5 g/L. The fronts of the breakthrough curves at high concentration seems to be the most affected by temperature.  相似文献   

8.
The inverse method of isotherm determination consists in calculating the numerical values of the coefficients of an isotherm model that give a set of chromatographic profiles in best possible agreement with the set of experimental profiles available. This method was applied to determine the adsorption isotherms of the 1-indanol enantiomers on a cellulose tribenzoate chiral stationary phase. Both single-component and competitive isotherms were determined by using no more than one or two overloaded band profiles. The isotherms determined from the overloaded band profiles agreed extremely well with the isotherms determined by frontal analysis. Several isotherm models were used and tested. The best-fit isotherm was selected by means of statistical evaluation of the results. The results show that the adsorption is best characterized with a model describing heterogeneous adsorption with bimodal adsorption energy distribution.  相似文献   

9.
Gradient elution has been studied in typical normal and reversed-phase systems. Deformations of gradient profiles have been evidenced as a result of preferential adsorption of modifiers of the mobile phase. This phenomenon was pronounced in the normal-phase system, for which gradient profiles deviated significantly from those programmed. This influenced the retention and shapes of band profiles of the eluting solute. Hence, in order to predict gradient propagation correctly the adsorption equilibrium of modifiers has been quantified. Moreover, at low modifier content, deformations of band profiles of the solute has been registered as a result of the competitive adsorption in the system solute-modifier. This effect has been predicted by a competitive adsorption model. For the reversed-phase systems the influence of the modifier adsorption on gradient propagation was insignificant for typical mobile phases investigated. Therefore, the work has been focused on gradient predictions in the normal-phase system.  相似文献   

10.
The single-component adsorption isotherms of the C60 (from 0 to 15 g/L) and C70 (from 0 to 8 g/L) buckminsterfullerenes on a tetraphenylporphyrin-bonded silica were acquired by frontal analysis, using a solution of toluene-1-methylnaphthalene (40:60, v/v) as the mobile phase. The best isotherm model derived from the fitting of these adsorption data was the bi-Langmuir model, a choice supported by the bimodal affinity energy distribution (AED) obtained for C60. The isotherm parameters derived from the inverse method (IM) of isotherm determination (by fitting calculated profiles to experimental overloaded band profiles of C60 and C70) are in very good agreement with those derived from the FA data. According to the isotherm parameters found by these three methods (FA, AED, IM), the tetraphenylporphyrin-bonded silica can adsorb 54 and 42 mmol/L of C60 and C70 fullerenes, respectively, a result that is consistent with the relative molecular size of these two compounds. The 20% lower surface accessibility for C70 is compensated by a three times higher equilibrium constant on the low-energy sites, giving a selectivity alpha(C70/C60) = 3.6. Large volumes (0.2, 0.8 and 1.7 mL) of mixtures of C60 (3.2 g/L) and C70 (1.3 g/L) were injected and their elution profiles compared to those calculated from the competitive bi-Langmuir model derived from the single-component isotherm data. A good agreement is obtained between calculated and experimental profiles, which supports the two-site adsorption mechanism derived from the single-component adsorption data. The measurements of the influence of the pressure on the retention of C60 and C70 demonstrate that the partial molar volumes of the two buckminsterfullerenes are 12 mL/mol larger in the stationary than in the mobile phase.  相似文献   

11.
Gradient elution provides significant improvement in peak capacity with respect to isocratic conditions and therefore should be used in comprehensive two-dimensional LC×LC, both in the first and in the second dimension, where, however, gradients are limited to a short time period available for separation, usually 1 min or less. Gradient conditions spanning over a broad mobile phase composition range in each second-dimension fraction analysis are used with generic "full in fraction" (FIF) gradients. "Segment in fraction" (SIF) gradients cover a limited gradient range adjusted independently to suit changing lipophilicity range of compounds transferred to the second dimension during the first-dimension gradient run and to provide regular coverage of the two-dimensional retention space. Optimization of the gradient profiles is important tool for achieving high two-dimensional peak capacity and savings of the separation time in comprehensive LC×LC. Calculations based on the well-established gradient-elution theory can be used to predict the elution times and bandwidths in fast gradients, taking into account increased probability of pre-gradient or post-gradient elution. The fraction volumes transferred into the second dimension may significantly affect the second-dimension bandwidths, especially at high elution strength of the fraction solvent, which may cause even band distortion or splitting in combined normal-phase (HILIC)-RP systems, but also in some two-dimensional RP-RP systems. In the present work, the effects of the fast gradient profile, of the sample volume and solvent on the elution time and bandwidths were investigated on a short column packed with fused-core porous-shell particles, providing narrow bandwidths and fast separations at moderate operating pressure.  相似文献   

12.
Single-component adsorption-isotherm data were acquired by frontal analysis (FA) for six low-molecular-mass compounds (phenol, aniline, caffeine, theophylline, ethylbenzene and propranolol) on one Kromasil-C18 column, using water-methanol solutions (between 70:30 and 20:80, v/v) as the mobile phase. Propranolol data were also acquired using an acetate buffer (0.2 M) instead of water. The data were modeled for best agreement between calculated and experimental overloaded band profiles. The adsorption energy distribution was also derived and used for the selection of the best isotherm model. Widely different isotherm models were found to model best the data obtained for these compounds, convex upward (i.e. Langmuirian), convex downward (i.e. anti-Langmuirian), and S-shaped isotherms. Using the same sample size for all columns (loading factor, Lf approximately 10%), overloaded band profiles were recorded on four different columns packed with the same batch of Kromasil-C18 and five other columns packed with different batches of Kromasil-C18. These experimental band profiles were compared to the profile calculated from the isotherm measured by FA on the first column. The repeatability as well as the column-to-column and the batch-to-batch reproducibilities of the band profiles are better than 4%.  相似文献   

13.
Using competitive frontal analysis, the binary adsorption isotherms of the enantiomers of 1-phenyl-l-propanol were measured on a microbore column packed with a chiral stationary phase based on cellulose tribenzoate. These measurements were carried out using only the racemic mixture. The experimental data were fitted to four different isotherm models: Langmuir, BiLangmuir, Langmuir-Freundlich and Tóth. The BiLangmuir and the Langmuir-Freundlich models accounted best for the competitive adsorption data. An excellent agreement between the experimental and the calculated overloaded band profiles for various samples of racemic mixture was obtained when the equilibrium dispersive model of chromatography was used together with the BiLangmuir competitive isotherm. The isotherm parameters measured under competitive conditions were used to calculate the overloaded band profiles of large samples of the pure S- and R-enantiomers, too. A satisfactory agreement between the experimental and calculated band profiles was observed when using in the computation the corresponding single component BiLangmuir isotherm derived from the binary isotherm previously determined. Thus oniy data derived from the racemic mixture are required for computer optimization of the preparative chromatography separation of the enantiomers.  相似文献   

14.
The inverse method (IM) is an attractive approach for estimating adsorption isotherm parameters in liquid chromatography (LC), mainly due to its experimental simplicity and low sample consumption. This article presents a new experimental approach, the inverse method on plateaus (IMP), which uses elution profiles on concentration plateaus together with IM. This approach enabled us to obtain very accurate adsorption isotherms that agreed well with those estimated by means of frontal analysis over the entire concentration range under consideration. IMP is recommended when accurate adsorption isotherm estimates are required, and standard IM is insufficient.  相似文献   

15.
The interactions of 3-chloro-1-phenyl-propanol with a quinidine carbamate-bonded chiral stationary phase under NPLC conditions were studied by measuring the adsorption isotherm data of its enantiomers by frontal analysis, modeling these data with a suitable isotherm model, and comparing the experimental overloaded elution band profiles with those calculated with this isotherm and the equilibrium dispersive model of liquid chromatography. The affinity energy distribution was calculated from the adsorption isotherm data. The results show that the surface of the adsorbent is heterogeneous and exhibits a bimodal adsorption energy distribution. This fact is interpreted in terms of the presence of two different types of adsorption sites on the stationary phase, nonselective and enantioselective sites. Albeit the bi-Langmuir isotherm model successfully accounts for the single-component data corresponding to both enantiomers, the competitive bi-Langmuir isotherm model does not allow an accurate prediction of the overloaded band profiles of the racemic mixture. Thermodynamic data are drawn for explanation. Some aspects of the retention mechanism are discussed in the light of the data obtained.  相似文献   

16.
Summary A recently developed self-modeling curve resolution method based in different factor analysis techniques has been applied for the first time to the study of liquid-chromatography-diode array data under situation where the separation of two components is not achieved. Two applications are reported: the resolution and quantitation of a coeluted mixture of carbamate pesticides pirimicarb and 1-naphthol, and the estimation of the concentration profiles of the double peak obtained in the elution of the triazine metabolite chlorodiamino-s-triazine. Different methods of quantitation are compared, including Evolving Factor Analysis and Rank annihilation. Quantitation from the area of the elution profiles once the component spectra have been transformed for their area contribution to the signal, gives a relative composition for pirimicarb and naphthol pesticides which agrees with the known sample composition. In the case of the unknown triazine mixture, an approximate quantitation of the two peaks obtained for this metabolite is obtained by assuming equal signal contribution or equal maximum absorbance of the individual spectra of the two detected components.  相似文献   

17.
New bioanalytical methods have been developed for the determination of imidafenacin (KRP-197/ONO-8025, IM), a novel antimuscarinic drug developed for the treatment of overactive bladder, and its metabolites, M-2, M-3, M-4, M-6 and M-8 (method 1), M-5 and M-9 (method 2) in human urine by using liquid chromatography-tandem mass spectrometry. In each method, the urine sample was extracted by solid-phase extraction, separated on a semi-micro high-performance liquid chromatography column using gradient elution and detected by tandem mass spectrometer with an atmospheric pressure chemical ionization or ionspray interface. Extraction recoveries of IM and metabolites were 81.4% or more. Calibration curves had good linearity in the concentration ranges 0.2-50 ng/mL for IM, M-2, M-3, M-4, M-6 and M-8 (method 1) and 1-250 ng/mL for M-5 and M-9 (method 2), respectively. The accuracy and precision in the intra-day and inter-day reproducibility tests were within +/-17.0 and 16.1% at the lowest concentrations, and within +/-12.8 and 11.1% at higher concentrations, respectively. Using these analytical methods, excretion profiles of IM and its metabolites in human urine were successfully determined after oral administration of IM at the therapeutic dosage of 0.1 mg.  相似文献   

18.
Summary A study of the optimization of the experimental conditions for the purification or extraction of pure compounds by liquid chromatography is presented. Optimum values of the parameters of overloaded elution are derived for maximum production rate, using a Simplex algorithm and the procedure previously described for the simulation of the elution profiles of binary mixtures. The mobile phase flow velocity and the sample size have been optimized together in a first step, simulating the procedure followed in practice, when a column is available. In a second part, the influence of the column length and the average particle size of the packing material on the column performance as well as the trade-offs between the production rate and the yield are discussed.There are three major conclusions in this work. First, the optimum experimental conditions are often very different, depending whether one is primarily interested in the first or in the second eluted component of a mixture. Second, the column efficiency under analytical conditions is very important: it is traded-off for high flow rates, hence short cycle time and increased production rate. Third, the production rate depends strongly on the maximum pressure at which the equipment can be operated. Finally, the optimum production rate varies rather smoothly with the mobile phase velocity and the sample size, so a high yield (70% or more) can usually be obtained with a limited loss in production rate (30 to 60%).  相似文献   

19.
The effect of the amount injected on the elution profile of a single solute was used to investigate the shape of the distribution isotherm in overloaded supercritical fluid chromatography. Subsequently, the role of competition between solutes when the column is overloaded with a binary mixture was studied. The band broadening pattern is explained by the difference between the solubilities of the solutes in the supercritical fluid mobile phase.  相似文献   

20.
A new method, temperature gradient interaction chromatography(TGIC) is employed for the characterization of macromolecules. Fine and reproducible control of interaction between polymer chains and the alkyl chain bonded silica packing material can be achieved by varying the temperature of the column. This method provides a far superior resolution to the conventional size exclusion chromatography. In addition, this method has a high sample loading capacity to be effective for preparative purpose. Furthermore, this method can be used to characterize binary polymer mixtures, where one component of a polymer mixture is separated by the size exclusion mechanism and the other is by the interaction mechanism simultaneously from single isocratic elution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号