首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present study investigates how strong the kinetic plot method is influenced by the changes in plate height, retention factor and apparent column permeability that arise under conditions of very high pressure. More precisely, the study investigates how well a set of performance measurements conducted on a single short column can be used to predict the performance of a long sequence of coupled columns. This has been investigated for the two practically most relevant thermal conditions, i.e., that of a forced-air oven and that of a still-air oven. Measuring column performance data for acetophenone and benzene on a series of coupled 3.5 μm columns that could be operated up to 1000 bar, it was found that the kinetic plot method provides accurate predictions of time versus efficiency for the still-air oven systems, over the entire range of investigated pressures and column lengths (up to 60 cm), provided k′ and Kv0 are evaluated at the maximal pressure. For the forced-air oven which leads to worse performances than the still-air oven, the kinetic plot prediction is less accurate, partly because the thermal conditions (near-isothermal) tend to vary if the number of coupled columns increases. The fact that the thermal conditions of the column wall might vary with the column length is an additional complexity making very-high pressure separations less predictable and harder to interpret and model.  相似文献   

2.
Advanced instruments for liquid chromatography enables the operation of columns packed with sub-2 μm particles at the very high inlet pressures, up to 1000 bar, that are necessary to achieve the high column efficiency and the short analysis times that can be provided by the use of these columns. However, operating rather short columns at high mobile phase velocities, under high pressure gradients causes the production of a large amount of heat due to the viscous friction of the eluent percolating through the column bed. The evacuation of this heat causes the formation of significant axial and radial temperature gradients. Due to these thermal gradients, the retention factors of analytes and the mobile phase velocity are no longer constant throughout the column. The consequence of this heat production is a loss of column efficiency. We previously developed a model combining the heat and mass balance of the column, the equations of flow through porous media, and a linear isotherm model of the analyte. This model was solved and validated for conventional columns operated under moderate pressures. We report here on the results obtained when this model is applied to columns packed with very fine particles, operated under very high pressures. These results prove that our model accounts well for all the experimental results. The same column that elutes symmetrical, nearly Gaussian peaks at low flow rates, under relatively low pressure drops, provides strongly deformed, unsymmetrical peaks when operated at high flow rates, under high pressures, and under different thermal environments. The loss in column efficiency is particularly important when the column wall is kept at constant temperature, by immersing the column in a water bath.  相似文献   

3.
The effects of particle size and thermal insulation on retention and efficiency in packed-column supercritical fluid chromatography with large pressure drops are described for the separation of a series of model n-alkane solutes. The columns were 2.0 mm i.d. × 150 mm long and were packed with 3, 5, or 10-μm porous octylsilica particles. Separations were performed with pure carbon dioxide at 50 °C at average mobile phase densities of 0.47 g/mL (107 bar) and 0.70 g/mL (151 bar). The three principal causes of band broadening were the normal dispersion processes described by the van Deemter equation, changes in the retention factor due to the axial density gradient, and radial temperature gradients associated with expansion of the mobile phase. At the lower density the use of thermal insulation resulted in significant improvements in efficiency and decreased retention times at large pressure drops. The effects are attributed to the elimination of radial temperature gradients and the concurrent enhancement of the axial temperature gradient. Thermal insulation had no significant effect on chromatographic performance at the higher density. A simple expression to predict the onset of excess efficiency loss due to the radial temperature gradient is proposed.  相似文献   

4.
Crystallization kinetics of poly(hydroxy butyrate), PHB, and its blends with poly(vinyl acetate), PVAc, have been thoroughly investigated using broadband dielectric technique over a wide range of frequencies (10−2-105 Hz) as functions of crystallization temperature and blend composition. The dielectric strength of the amorphous segments, Δε, which is directly proportional to the volume fraction of the mobile amorphous phase in the blend decreases exponentially with increasing the crystallization time. However, on the other hand, the dielectric strength of the rigid amorphous segments, Δεα′, which is related to the percentage of crystallinity in the blend increases dramatically with increasing crystallization time. A great variation in the dynamical constraints of relaxation segments with increasing crystallization time has been observed as a result of different environments, which would lead to a variation in the consistency of the cooperative regions. The value of the dielectric constant, ε′, decreases dramatically with increasing crystallization time, after that it reaches an equilibrium value at the end of the crystallization process. This dramatic decrease in the value of ε′ as a result of crystallization at a given crystallization temperature, was taken as an accurate evaluation for the amount of the amorphous phase that has undergone crystallization considering the theoretical approach of Avrami. The Avrami exponent, n, was found to be crystallization temperature, Tc, independent (n ∼ 3) indicating a three-dimensional crystal growth for pure PHB. The crystallization rate constant, k, increases greatly with increasing Tc due to the high crystallization rate. In the blend the value of n was found to be concentration dependent (n ∼ 1.8-3.2). The different values of n indicate that the shapes of the growing crystals are affected by blend concentration. For n ∼ 1.8, the crystals can either grow sporadically as rods or instantaneously as disks, while for n ∼ 3 a three-dimensional crystal growth takes place.  相似文献   

5.
(Solid + liquid) phase equilibria (SLE) of (n-hexadecane, or n-octadecane + 3-methylpentane, or 2,2-dimethylbutane, or benzene) at very high pressures up to about 1.0 GPa have been investigated at the temperature range from T = (293 to 353) K. The thermostated apparatus for the measurements of transition pressures from the liquid to the solid state in two component isothermal solutions was used. The pressure-temperature-composition relation of the high pressure (solid + liquid) phase equilibria, polynomial based on the general solubility equation at atmospheric pressure was satisfactorily used. Additionally, the SLE of binary systems (n-hexadecane, or n-octadecane + 3-methylpentane, or 2,2-dimethylbutane, or benzene, or n-hexane or cyclohexane) at normal pressure was discussed. The results at high pressures were compared for every system to these at normal pressure. The influence of the size and shape effects on the solubility at 0.1 MPa and high pressure up to 600 MPa was discussed.The main aim of this work was to predict the mixture behaviour using only pure components data and cubic equation of state in the wide range of pressures, far above the pressure range which cubic equations of state are normally applied to. The fluid phase behaviour is described by the corrected SRK-EOS and the van der Waals one fluid mixing rules.  相似文献   

6.
The study aimed to find the best trade-off between separation of the most critical peak pair and analysis time, in enantioselective GC–FID and GC–MS analysis of lavender essential oil, using the GC method-translation approach. Analysis conditions were first optimized for conventional 25 m × 0.25 mm inner diameter (dc) column coated with 6I–VII-O-tert-butyldimethylsilyl-2I–VII-3I–VII-O-ethyl-β-cyclodextrin (CD) as chiral stationary phase (CSP) diluted at 30% in PS086 (polymethylphenylpolysiloxane, 15% phenyl), starting from routine analysis. The optimal multi-rate temperature program for a pre-set column pressure was determined and then used to find the pressures producing the efficiency-optimized flow (EOF) and speed-optimized flow (SOF). This method was transferred to a shorter narrow-bore (NB) column (11 m × 0.10 mm) using method-translation software, keeping peak elution order and separation. Optimization of the enantioselective GC method with the translation approach markedly reduced the analysis time of the lavender essential oil, from about 87 min with the routine method to 40 min with an optimal multi-rate temperature program and initial flow with a conventional inner diameter column, and to 15 min with FID as detector or 13.5 min with MS with a corresponding narrow-bore column, while keeping enantiomer separation and efficiency.  相似文献   

7.
Porous layer open tubular (PLOT) polystyrene divinylbenzene columns have been used for separating intact proteins with gradient elution. The 10 μm I.D. × 3 m columns were easily coupled to standard liquid chromatography–mass spectrometry (LC–MS) instrumentation with commercially available fittings. Standard proteins separated on PLOT columns appeared as narrow and symmetrical peaks with good resolution. Average peak width increased linearly with gradient time (tG) from 0.14 to 0.33 min (tG 20 and 120 min, respectively) using a 3 m column. With shorter columns, peak widths were larger and increased more steeply with gradient time. Theoretical peak capacity (nc) increased with column length (tested up to 3 m). The nc increased with tG until a plateau was reached. The highest peak capacity achieved (nc = 185) was obtained with a 3 m column, where a plateau was reached with tG 90 min. The within- and between column retention time repeatabilities were below 0.6% and below 2.5% (relative standard deviation, RSD), respectively. The carry-over following injection of 0.5 ng per protein was less than 1.1%. The retention time dependence on column temperature was investigated in the range 20–50 °C. Proteins in a skimmed milk sample were separated using the method.  相似文献   

8.
We packed an ionic liquid (IL)-functionalized stationary phase – based on 1-octyl-3-propylimidazolium chloride covalently bounded to silica gel – into a 3.2 mm × 250 mm column for the simultaneous separation of acidic, basic, and neutral compounds using carbon dioxide subcritical/supercritical fluid chromatography (SFC), and examined the effects of the pressure, temperature, co-solvents, and additives on the retention behavior of the analytes. The model compounds tested for SFC separation are acetaminophen, metoprolol, fenoprofen, ibuprofen, naphthalene, and testosterone. The data indicate that hydrogen-bonding and hydrophobic interactions between the analytes and the IL-modified stationary phase seem to involve in the separation process. Simultaneous separation of acidic, basic, and neutral compounds via SFC was successful at a co-solvent content of 20% MeOH, a pressure of 110 bar, and a column temperature of 35 °C. The relative standard deviations of the retention times and peak areas at 50 ppm were all less than 4 and 8% (n = 6), respectively.  相似文献   

9.
Huahua Bai  Guohong Xie 《Talanta》2010,80(5):1638-1642
Hydrophobic ionic liquid could be dispersed into infinite droplets under driving of high temperature, and then they can aggregate as big droplets at low temperature. Based on this phenomenon a new liquid-phase microextraction for the pre-concentration of lead was developed. In this experiment, lead was transferred into its complex using dithizone as chelating agent, and then entered into the infinite ionic liquid drops at high temperature. After cooled with ice-water bath and centrifuged, lead complex was enriched in the ionic liquid droplets. Important parameters affected the extraction efficiency had been investigated including the pH of working solution, amount of chelating agent, volume of ionic liquid, extraction time, centrifugation time, and temperature, etc. The results showed that the usually coexisting ions containing in water samples had no obvious negative effect on the recovery of lead. The experimental results indicated that the proposed method had a good linearity (R = 0.9951) from 10 ng mL−1 to 200 ng mL−1. The precision was 4.4% (RSD, n = 6) and the detection limit was 9.5 ng mL−1. This novel method was validated by determination of lead in four real environmental samples for the applicability and the results showed that the proposed method was excellent for the future use and the recoveries were in the range of 94.8-104.1%.  相似文献   

10.
Several physical properties were determined for the ionic liquid 3-methyl-N-butylpyridinium tricyanomethanide ([3-mebupy]C(CN)3): liquid density, viscosity, surface tension, thermal stability and heat capacity in the temperature range from (283.2 to 363.2) K and at 0.1 MPa. The density and the surface tension could well be correlated with linear equations and the viscosity with a Vogel-Fulcher-Tamman equation. The IL is stable up to a temperature of 420 K.Ternary data for the systems {benzene + n-hexane, toluene + n-heptane, and p-xylene + n-octane + [3-mebupy]C(CN)3} were determined at T = (303.2 and 328.2) K and p = 0.1 MPa. All experimental data were well correlated with the NRTL model. The experimental and calculated aromatic/aliphatic selectivities are in good agreement with each other.  相似文献   

11.
The thermal decomposition of ammonia-borane BH3NH3 in the temperature range up to 450 K has been studied by differential scanning calorimetry (DSC) and volumetric analysis of the released volatile decomposition products. Measurements were performed in a transitiometer ST6-VI under pressures up to 600 bar and in a DSC C-80 in the pressure range 1-100 bar hydrogen. Above 360 K ammonia-borane undergoes an exothermic decomposion, which proceeds in two steps with rising temperature. The decomposition is accompanied by hydrogen release. Formation of further volatile products, beside hydrogen, seems to be negligible. The heat evolution and hydrogen release terminates near 430 K. The final amount of released hydrogen is approximately equal to 2 mol H2/mol ammonia-borane. Variation of pressure does not influence significantly the reaction enthalpy and hydrogen release. The transitiometer ST6-VI is well-suitable for the monitoring of solid-gas reaction under high-pressure conditions. This instrument enables a reliable determination of the reaction heat and the amount of gas release/gas uptake.  相似文献   

12.
The isobaric thermal expansivity against temperature and pressure for the system 1-hexanol + n-hexane was directly determined by means of a calorimetric method. From these data, the excess isobaric thermal expansivity is calculated at representative temperatures and pressures. The obtained results for this excess quantity are qualitatively discussed by applying well-known arguments often used for explaining the thermodynamic behavior of alcohol + alkane mixtures. In order to check the consistency of these data with those of literature, the derivative of excess molar volume against temperature and that of excess isobaric molar heat capacity against pressure are calculated and compared with those obtained from literature data. Very good coherence between both data sources is obtained.  相似文献   

13.
An epoxy-based monolith has been developed for use as hydrophilic support in bioseparation. This monolith is produced by self-polymerization of polyglycerol-3-glycidyl ether in organic solvents as porogens at room temperature within 1 h. One receives a highly cross-linked structure that provides useful mechanical properties. The porosity and pore diameter can be controlled by varying the composition of the porogen. In this work, an epoxy-based monolith with a high porosity (79%) and large pore size (22 μm) is prepared and used in affinity capturing of bacterial cells. These features allow the passage of bacterial cells through the column. As affinity ligand polymyxin B is used, which allows the binding of gram-negative bacteria. The efficiency of the monolithic affinity column is studied with Escherichia coli spiked in water. Bacterial cells are concentrated on the column at pH 4 and eluted with a recovery of 97 ± 3% in 200 μL by changing the pH value without impairing viability of bacteria. The dynamic capacity for the monolithic column is nearly independent of the flow rate (4 × 109 cells/column). Thereby, it is possible to separate and enrich gram-negative bacterial cells, such as E. coli, with high flow rates (10 mL/min) and low back pressure (<1 bar) in a volume as low as 200 μL compatible for real-time polymerase chain reaction, microarray formats, and biosensors.  相似文献   

14.
The UHPLC strategy which combines sub-2 μm porous particles and ultra-high pressure (>1000 bar) was investigated considering very high resolution criteria in both isocratic and gradient modes, with mobile phase temperatures between 30 and 90 °C. In isocratic mode, experimental conditions to reach the maximal efficiency were determined using the kinetic plot representation for ΔPmax = 1000 bar. It has been first confirmed that the molecular weight of the compounds (MW) was a critical parameter which should be considered in the construction of such curves. With a MW around 1000 g mol−1, efficiencies as high as 300,000 plates could be theoretically attained using UHPLC at 30 °C. By limiting the column length to 450 mm, the maximal plate count was around 100,000. In gradient mode, the longest column does not provide the maximal peak capacity for a given analysis time in UHPLC. This was attributed to the fact that peak capacity is not only related to the plate number but also to column dead time. Therefore, a compromise should be found and a 150 mm column should be preferentially selected for gradient lengths up to 60 min at 30 °C, while the columns coupled in series (3× 150 mm) were attractive only for tgrad > 250 min. Compared to 30 °C, peak capacities were increased by about 20–30% for a constant gradient length at 90 °C and gradient time decreased by 2-fold for an identical peak capacity.  相似文献   

15.
Xu Y  Zhou J  Wang G  Zhou J  Tao G 《Analytica chimica acta》2007,584(1):204-209
Inductively coupled plasma atomic emission spectrometry (ICP-AES) was applied to the determination of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment. Samples were dissolved with hydrochloric acid and hydrogen peroxide. The digest was passed through a column, which was packed with a polymer resin containing a neutral organophosphorus extractant, tri-n-butylphosphate. Iron was sorbed selectively on the resin and the analytes of interest passed through the column, allowing the effective separation of them from the iron matrix. Conditions of separation were optimized. The detection limits (3σ) in solution were 10, 40, 7 and 5 μg L−1, and in pigment were 0.2, 0.8, 0.14 and 0.1 mg kg−1 for lead, arsenic, cobalt and nickel, respectively. The recoveries ranged from 95% to 107% when sample digests were spiked with 5 μg of the analytes of interest, and relative standard deviations (n = 6) were 1.5-17.6% for the determination of the spiked samples. The method was successfully applied to the determination of trace amounts of these elements in high-purity iron oxide pigment samples.  相似文献   

16.
A postcolumn reactor or a simple open tube connecting a capillary column to, for example, a mass spectrometer affects the performance of a capillary liquid chromatography system in two ways: stealing pressure from the column and adding band-spreading. This effect is especially intolerable in fast separations. Our calculations show that in the presence of a 25 μm radius postcolumn reactor, column (50 μm radius) efficiency (number of theoretical plates) is severely reduced by more than 75% with a t0 of 10 s and a particle diameter from 1 to 5 μm for unretained solutes at room temperature. Therefore, it is necessary to minimize the reactor's effect and to improve the column efficiency by optimizing postcolumn conditions. We derived an equation that defines the observed number of theoretical plates (Nobs) taking into account the two effects stated above, which is a function of the maximum pressure Pm, the particle diameter dp, the reactor radius ar, the column radius ac, the desired dead time t0, the column temperature T and zone capacity factor k″. Poppe plots were obtained by calculations using this equation. The results show that for a t0 shorter than 18 s, a Pm of 4000 psi, and a dp of 1.7 μm, a 5 μm radius reactor has to be used. Such a small reactor is difficult to fabricate. Fortunately, high temperature helps to minimize the reactor effect so that reactors with manageable radius (larger than 12.5 μm) can be used in many practical conditions. Furthermore, solute retention diminishes the influence of a postcolumn reactor. Thus, a 12.5 μm reactor supersedes a 5 μm reactor for retained solutes even at a t0 of 5 s (k″ > 3.8, or k′ > 2.0).  相似文献   

17.
The thermodynamic properties, PVTx (TS, PS, ρS), (∂P/∂T)VX, and CVVTx, of three microemulsions (water + n-octane + sodium dodecylsulfate + 1-pentanol) with composition of solution-1: 0.0777 (H2O):0.6997 (n-C8H18):0.0777 (SDS):0.1449 (1-C5H11OH) mass fraction; solution-2: 0.6220 (H2O):0.1555 (n-C8H18):0.0777 (SDS):0.1448 (1-C5H11OH) mass fraction; and solution-3: 0.2720 (H2O):0.5054 (n-C8H18):0.0777 (SDS):0.1449 (1-C5H11OH) mass fraction were measured. Sodium dodecylsulfate (SDS) was used as an ionic surfactant, 1-pentanol used as stabilizer (cosurfactant), and n-octane as oil component in aqueous solution. A high-temperature, high-pressure, adiabatic, and nearly constant-volume calorimeter supplemented by quasi-static thermogram technique was used for the measurements. Measurements were made at eight densities (isochores) between 475.87 and 919.03 kg m−3. The range of temperature was from 275 to 536 K and pressure range was up to 138 bar. Uncertainty of the pressure, density, derivative (∂P/∂T)VX, and heat capacity measurements are estimated to be 0.25%, 0.02%, 0.12-1.5%, and 2.5%, respectively. Temperatures at liquid-gas phase transition curve, TS(ρ), for each measured densities (isochores) were determined using a quasi-static thermogram technique. The uncertainty of the phase transition temperature measurements is about ±0.02 K. The effect of temperature, density, and concentration on the heat capacity of the microemulsions is discussed. Along the isochore of 438.40 kg m−3 at temperatures above 525.44 K for the first solution the precipitation of the solid phase (SDS) was found.  相似文献   

18.
A practical investigation of frictional heating effects in conventional C18 columns was undertaken, to investigate whether problems found for sub-2 μm columns were also present for those of particle size 3 μm and 5 μm and different internal diameter. The influence of a water bath, a still air heater, and a forced air heater on performance was investigated. Heating effects were substantial, with a decrease in k of almost 15% for toluene over the flow rate range ∼0.4–2.3 mL/min with a 15 cm × 0.46 cm ID column packed with 3 μm particles. Heating effects on retention increased with increasing solute k, with increase in the column ID, with decrease in the column particle size, and with decrease in the set column oven temperature. While the water bath minimised axial temperature gradients and thus its effect on k, radial temperature gradients were potentially serious with this system, especially at high mobile phase velocity, even with columns containing 5 μm particles. In contrast to the effects of axial temperature gradients in 4.6 mm columns, very little difference in Van Deemter plots was noted between the three different thermostats with 2 mm ID columns, even when 3 μm particles were used. However, the efficiency of 2 mm columns for peaks of low or moderate k (k < 4) can be compromised by the extra dead volume introduced by the heating systems, even with conventional HPLC systems with otherwise minimised extra column volume.  相似文献   

19.
Kynurenic acid (KYNA), an endogenous antagonist of ionotropic glutamate and α7 nicotinic receptors, was fluorometrically determined by column-switching high-performance liquid chromatography (HPLC) with fluorescence detection. The HPLC system consists of two octadecyl silica (ODS) columns, both of which are connected with an anion-exchange column (trapping column). Following sample injection onto the HPLC column, KYNA was separated on the first ODS column with a mobile phase of H2O/acetonitrile (95/5) containing 0.1% acetic acid. The peak fraction of KYNA was trapped on the anion-exchange column by changing the position of a six-port valve and then introduced into the second ODS column. Subsequently, KYNA was detected fluorometrically as a fluorescence complex formed with zinc ion which was pumped constantly. Instrumental limit of detection was approximately 0.16 nM, which corresponded to 8.0 fmol (per 50 μl injection, signal to noise ratio 3), and the limit of quantification was 0.53 nM (signal to noise ratio 10). Intra- and inter-day relative standard deviations were 1.1-3.9% (n = 3) and 3.0-5.3% (n = 3), respectively. The peak of KYNA in rat plasma was clearly detected by the proposed column-switching HPLC system after a facile pretreatment procedure. Intra- and inter-day relative mean errors were −1.6-1.4% (n = 3) and −2.4 to −0.4% (n = 3), respectively, with a satisfactory precision (within 5.0%). A calibration curve for the determination of KYNA showed a good linearity (r2 > 0.999) in the range of 25-200 nM. The KYNA concentrations in the plasma of male Sprague-Dawley rats (8-week-old) were 44 ± 5.5 nM (mean ± S.E., n = 5). In ketamine-treated rats, which are animal models of schizophrenia, the plasma KYNA concentrations were significantly increased compared with those in the control rats (p < 0.05).  相似文献   

20.
A phenylboronic acid-silica hybrid monolithic column for capillary liquid chromatography (cLC) was prepared through one-pot process by using 4-vinylphenylboronic acid (VPBA) and alkoxysilanes simultaneously. The effects of the molar ratio of tetramethyloxysilane/γ-methacryloxypropyltrimethoxysilane (TMOS/γ-MAPS), amount of VPBA, and the volume of diethylene glycol (DEG) on the morphologies, permeabilities and pore properties of the prepared VPBA-silica hybrid monolithic columns were studied in detail. A relatively uniform monolithic structure with high porosity was obtained with optimized ingredients. A series of cis-diol-containing compounds, alkylbenzenes, amides, and anilines were utilized to evaluate the retention behaviors of the VPBA-silica hybrid monolithic column. The result demonstrated that the prepared VPBA-silica hybrid monolithic column exhibited multiple interactions including hydrophobicity, hydrophilicity, as well as cation exchange apart from the expected affinity interaction. The run-to-run, column-to-column and batch-to-batch reproducibility of the VPBA-silica hybrid monolith were satisfactory with the relative standard deviations (RSDs) less than 1.63% (n = 5), 2.02% (n = 3) and 2.90% (n = 5), respectively, indicating the effectiveness and practicability of the proposed method. In addition, the VPBA-silica hybrid monolithic column was further applied to the separation of proteins and tryptic digest of bovine serum albumin (BSA), respectively. The successful applications suggested the potential of the VPBA-silica hybrid monolith in proteome analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号