首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The retention characteristics of phenyl type stationary phases for reversed phase high performance liquid chromatography are still largely unknown. This paper explores the retention process of these types of stationary phases by examining the retention behaviour of linear PAHs and n-alkylbenzenes on a series of propyl phenyl stationary phases that have changes in their ligand density (1.23, 1.31, 1.97, 2.50 μmol m−2). The aromatic and methylene selectivities increased with increasing ligand density until a point where a plateau was observed, overall the propyl phenyl phases had a higher degree of aromatic selectivity than methylene selectivity indicating that these columns are suitable for separations involving aromatic compounds. Also, retention characteristics relating to the size of the solute molecule were observed to be influenced by the ligand density. It is likely that the changing retention characteristics are caused by the different topologies of the stationary phases at different ligand densities. At high ligand densities, the partition coefficient became constant.  相似文献   

2.
The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute–solute interactions that are likely caused by π–π interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weight aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.  相似文献   

3.
Lai X  Tang W  Ng SC 《Journal of chromatography. A》2011,1218(22):3496-3501
Cyclodextrin and its derivatives are widely used as selectors of chiral stationary phases (CSPs) for high performance liquid chromatography (HPLC) due to their unique molecular structure and resolution capability. Three mono(6(A)-N-(ω-alkenylamino)-6(A)-deoxy)perphenylcarbamoylated β-cyclodextrin (PICD) based CSPs with different length spacers have been prepared, with their enantioseparation abilities evaluated with 10 model racemates including aromatic alcohols, flavanone compounds, amine and non-protolytic compounds under normal-phase conditions. The effect of spacer length and surface loading on the enantioseparation performance of CSPs is investigated herewith. The results indicate that higher surface loading 6C-PICD displays the best enantioselectivities towards selected racemates under normal-phase conditions.  相似文献   

4.
The separation of enantiomers of a series of eighteen novel nitrogen mustard linked phosphoryl diamide derivatives was investigated on the prepared phenyl carbamate derivative β-cy-clodextrin bonded phase in normal-phase HPLC. Some of the enantiomers could be separated in baseline. The chiral recognition mechanism was also suggested for the separation of chiral phosphorus organic compounds.  相似文献   

5.
The renaturation of the denaturedα-chymotrypsin (α-Chy) with 1.7 mol·L-1 gua-nidine hydrochloride (GuHCI) by three kinds of stationary phase of high performance hydropho-bic interaction chromatography (STHIC) with a comparable hydrophobicity but different ligand structures was investigated. The obtained result indicates that the ligand structures of the three STHIC contribute to the renaturation efficiency ofα-Chy in the order of the end ligands PEG-600< phenyl group < tetrahydrofurfuryl alcohol (THFA).  相似文献   

6.
In order to study the effect of the nature and the length of the spacer, three mixed 10-undecenoate/phenylcarbamate derivatives of β-cyclodextrin have been prepared and linked to allylsilica gel by means of a radical reaction. The chiral recognition ability of the resulting materials, when used as liquid chromatography chiral stationary phases (CSPs), was evaluated using heptane and either 2-propanol or chloroform as organic mobile-phase modifiers. A large variety of racemic compounds have been separated successfully on these CSPs (mainly pharmaceuticals and herbicides). Optimization of these separations was discussed in terms of mobile-phase composition and structural patterns of the injected analytes. The efficiencies of the three prepared materials were compared to those of previously described perphenylated-β-cyclodextrin column and to analogous cellulose derivative-based CSPs. Schematic illustration of the b-cyclodextrin/mandelic acid inclusion complex  相似文献   

7.
In this study, the advantages of carrying out the analysis of peptides and tryptic digests of proteins under gradient elution conditions at pH 6.5 by reversed-phase liquid chromatography (RP-HPLC) and in-line electrospray ionisation mass spectrometry (ESI-MS) are documented. For these RP separations, a double endcapped, bidentate anchored n-octadecyl wide pore silica adsorbent was employed in a capillary column format. Compared to the corresponding analysis of the same peptides and protein tryptic digests using low pH elution conditions for their RP-HPLC separation, this alternative approach provides improved selectivity and more efficient separation of these analytes, thus allowing a more sensitive identification of proteins at different abundance levels, i.e. more tryptic peptides from the same protein could be confidently identified, enabling higher sequence coverage of the protein to be obtained. This approach was further evaluated with very complex tryptic digests derived from a human plasma protein sample using an online two-dimensional (2D) strong cation-exchange (SCX)-RP-HPLC-ESI-MS/MS system. Again, at pH 6.5, with mobile phases of different compositions, improved chromatographic selectivities were obtained, concomitant with more sensitive on-line electrospray ionisation tandem mass spectrometric (ESI-MS/MS) analysis. As a consequence, more plasma proteins could be confidently identified, highlighting the potential of these RP-HPLC methods with elution at pH 6.5 to extend further the scope of proteomic investigations.  相似文献   

8.
Dispersive liquid–liquid microextraction (DLLME) has been developed for the extraction and preconcentration of diethofencarb (DF) and pyrimethanil (PM) in environmental water. In the method, a suitable mixture of extraction solvent (50 µL carbon tetrachloride) and dispersive solvent (0.75 mL acetonitrile) are injected into the aqueous samples (5.00 mL) and the cloudy solution is observed. After centrifugation, the enriched analytes in the sediment phase were determined by HPLC-VWD. Different influencing factors, such as the kind and volume of extraction and dispersive solvent, extraction time and salt effect were investigated. Under the optimum conditions, the enrichment factors for DF and PM were both 108 and the limit of detection were 0.021 ng mL?1 and 0.015 ng mL?1, respectively. The linear ranges were 0.08–400 ng mL?1 for DF and 0.04–200 ng mL?1 for PM. The relative standard deviation (RSDs) were both almost at 6.0% (n = 6). The relative recoveries from samples of environmental water were from the range of 87.0 to 107.2%. Compared with other methods, DLLME is a very simple, rapid, sensitive (low limit of detection) and economical (only 5 mL volume of sample) method.  相似文献   

9.
A novel chiral stationary phase (CSP) was prepared by chemically bonding carboxymethyl-β-cyclodextrin (CM-β-CD) onto 3-aminopropyl silica gel and showed excellent enantioseparation abilities for a broad range of chiral compounds and drugs.  相似文献   

10.
Different substituent groups were introduced onto the rim of β-cyclodextrin through rigid CN bonds to form a series of imino-modified β-cyclodextrin derivatives: mono(6-deoxy-phenylimino)-β-cyclodextrin (BCD), mono(6-deoxy-isopropylimino)-β-cyclodextrin (YBCD), mono(6-deoxy-N-1-phenylethylimino)-β-cyclodextrin (R-,S-BYCD), mono[6-deoxy-N-1-(2-hydroxyl)-phenylethylimino]-β-cyclodextrin (R-,S-PGCD), heptakis(2,6-o-diamyl-6-deoxy-phenylimino)-β-cyclodextrin (WBCD), heptakis(2,6-o-diamyl-6-deoxyisopropylimino)-β-cyclodextrin (WYBCD) and heptakis[2,6-o-diamyl-6-deoxy-R-(-)-N-1-phenylethylimino)-β-cyclodextrin (WRBYCD). The obtained derivatives were then bonded to silica gel and used in high-performance liquid chromatography (HPLC) as chiral stationary phases (CSPs). The separation performance of these CSPs was examined by separating disubstituted benzenes, amino acids, ferrocene derivatives andchiral aromatic alcohol compounds. Satisfactory separation results were obtained for most of the compounds. The values for selectivity factors can reach up to 8.50 and 8.16 for separating positional isomers and ferrocene derivatives, respectively, and the best resolution was 6.89 for aromatic alcohol derivative separations. Molecular dynamics (MD) simulations were carried out for chiral discrimination of rac-N-benzoyl-phenylglycinol on S-PGCD CSP to study the recognition mechanism. MD simulation results show that the average free-energy of interaction is −1304.83 kcal/mol for the l-enantiomer and S-PGCD and −1324.23 kcal/mol for the d-enantiomer and S-PGCD. In the recognition stage, the l-enantiomer moves along the exterior of the cyclodextrin cavity from the wider edge to the narrower edge of cyclodextrin whereas the d-enantiomer moves slightly towards the cavity. The l-enantiomer thus is separated first due to weaker interaction with S-PGCD.  相似文献   

11.
Li Zhang  Shouzhuo Yao 《Talanta》2010,82(3):984-78
A novel method was developed for the analysis of four β-blockers, namely sotalol, carteolol, bisoprolol, and propranolol, in human urine by coupling carrier-mediated liquid phase microextraction (CM-LPME) to high performance liquid chromatography (HPLC). By adding an appropriate carrier in organic phase, simultaneous extraction and enrichment of hydrophilic (sotalol, carteolol, and bisoprolol) and hydrophobic (propranolol) drugs were achieved. High enrichment factors were obtained by optimizing the compositions of the organic phase, the acceptor solution, the donor solution, the stirring rate, and the extraction time. The linear ranges were from 0.05 to 10.0 mg L−1 for sotalol and carteolol, and from 0.05 to 8.0 mg L−1 for bisoprolol and propranolol. The limits of detection (S/N = 3) were 0.01 mg L−1 for sotalol, carteolol, and bisoprolol, and 0.005 mg L−1 for propranolol. The relative standard deviations were lower than 6%. The developed method exhibited high analyte preconcentration and excellent sample clean-up effects with little solvent consumption and was found to be sensitive and suitable for simultaneous determination of the above four drugs spiked in human urine. Furthermore, the successful analysis of propranolol in real urine specimens revealed that the determination of β-blockers in human urine is feasible using the present method.  相似文献   

12.
The thermodynamic characteristics of sorption of 24 organic compounds of various classes from the gas phase on the binary stationary phase based on polyethylene glycol 400 and permethylated β-cyclodextrin were determined. The influence of geometrical structure and optical activity of organic compounds on the possibility of forming sorbate–macrocycle complexes was examined. It was found that the studied stationary phase shows the enantioselectivity towards low-polar terpenes under the conditions of gas chromatography.  相似文献   

13.
Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MS n analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well.  相似文献   

14.
A method based on the use of the through oven transfer adsorption–desorption (TOTAD) interface in on-line coupling between reversed phase liquid chromatography and gas chromatography (RPLC–GC) for the determination of chiral volatile compounds was developed. In particular, the method was applied to the study of the influence of methyl jasmonate (MJ) treatment on the production and enantiomeric composition of selected aroma compounds in strawberry. The compounds studied were ethyl 2-methylbutanoate, linalool and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (i.e. furaneol), which were examined on days 3, 6 and 9 after treatment. The method developed resulted in relative standard deviations (RSDs) of 21.6%, 8.1% and 9.8% and limits of detection (LD) of 0.04, 0.07 and 0.02 mg/l for ethyl 2-methylbutanoate, linalool and furaneol, respectively. The application of the RPLC–TOTAD–GC method allowed higher levels of ethyl 2-methylbutanoate, linalool and furaneol to be detected, particularly after 9 days of treatment. Besides, MJ demonstrated to affect the enantiomeric distribution of ethyl 2-methylbutanoate. On the contrary, the enantiomeric composition of linalool and furaneol kept constant in both control and MJ-treated strawberries throughout the study. These results are discussed.  相似文献   

15.
The highly complex matrix of activated sludge in sewage treatment plants (STPs) makes it difficult to detect endocrine-disrupting chemicals (EDCs) which are usually present at low concentration levels. To date, no literature has reported the concentrations of steroid estrogens in activated sludge in China and very limited data are available worldwide. In this work, a highly selective and sensitive analytical method was developed for simultaneous determination of two classes of EDCs, including estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2), 4-nonylphenol (NP) and bisphenol A (BPA), in the liquid and solid phases of activated sludge. The procedures for sample preparation, extracts derivatization, and gas chromatography–mass spectrometry (GC–MS) quantification were all optimized to effectively determine target EDCs while minimizing matrix interference. The developed method showed good calibration linearity, recovery, precision, and a low limit of quantification (LOQ) for all selected EDCs in both liquid and solid phases of activated sludge. It was successfully applied to determine the concentrations of EDCs in activated sludge samples from two STPs located in Beijing and Shanghai of China, respectively.  相似文献   

16.
An in-syringe demulsified dispersive liquid–liquid microextraction (ISD–DLLME) technique was developed using low-density extraction solvents for the highly sensitive determination of the three trace fungicides (azoxystrobin, diethofencarb and pyrimethanil) in water samples by high performance liquid chromatography–mass spectrometry chromatography–diode array detector/electrospray ionisation mass spectrometry. In the proposed technique, a 5-mL syringe was used as an extraction, separation and preconcentration container. The emulsion was obtained after the mixture of toluene (extraction solvent) and methanol (dispersive solvent) was injected into the aqueous bulk of the syringe. The obtained emulsion cleared into two phases without centrifugation, when an aliquot of methanol was introduced as a demulsifier. The separated floating organic extraction solvent was impelled and collected into a pipette tip fitted to the tip of the syringe. Under the optimal conditions, the enrichment factors for azoxystrobin, diethofencarb and pyrimethanil were 239, 200, 195, respectively. The limits of detection, calculated as three times the signal-to-noise ratio (S N−1), were 0.026 μg L−1 for azoxystrobin, 0.071 μg L−1 for diethofencarb and 0.040 μg L−1 for pyrimethanil. The repeatability study was carried out by extracting the spiked water samples at concentration levels of 0.02 μg mL−1 for all the three fungicides. The relative standard deviations varied between 4.9 and 8.2% (n = 5). The recoveries of all the three fungicides from tap, lake and rain water samples at spiking levels of 0.2, 1, 5 μg L−1 were in the range of 90.0–105.0%, 86.0–114.0% and 88.6–110.0%, respectively. The proposed ISD–DLLME technique was demonstrated to be simple, practical and efficient for the determination of different kinds of fungicide residues in real water samples.  相似文献   

17.
18.
1-Allyl-3-butylimidazolium bromide ionic liquid [AyBIm]Br was prepared and used for the modification of mercaptopropyl-functionalized silica through surface radical chain-transfer addition. The obtained ionic liquid-modified silica (SiImBr) was characterized by elemental analysis, infrared spectroscopy, NMR spectroscopy, and thermogravimetric analysis. The selective retention behaviours of polycyclic aromatic hydrocarbons (PAHs) including some positional isomers were investigated using SiImBr as a stationary phase in reversed-phase liquid chromatography. The results showed that SiImBr presented multiple interactions including hydrophobic, π–π, and ion–dipole interactions during the separation of PAHs and dipolar compounds. However, it is proposed that π–π and ion–dipole interactions play important roles in the separation of PAHs and dipolar compounds. These results indicate that the ionic liquid-modified silica stationary phase is promising for future applications. A commercially available monomeric octadecylated silica (ODS) column and a custom-made poly(styrene)-grafted silica (Sil-Stn) column were used as references.  相似文献   

19.
A new method for the identification and the quantification of nonanthocyanin phenolic compounds from six Vitis Vinifera grape varieties native to Sardinia (three native: Vermentino, Malvasia and Cannonau and three non-native types: Chardonnay, Sauvignon and Cabernet Sauvignon; Argiolas vineyard) was developed. This rapid and selective method employs LC/ESI-MS in negative mode. Different solvents extraction and different sorbents for purification were compared to the direct analysis of the initial extracts without further sample preparation. A total of 54 phenolic compounds were identified either in the freeze-dried skins or seeds, including nonflavonoids (hydroxybenzoic and hydroxycinnamic acids and their derivatives, stilbenes) and flavonoids (flavanols, flavonols, dihydroxyflavonols).  相似文献   

20.
A new dispersive liquid–liquid microextraction based on solidification of floating organic droplet method (DLLME-SFO) was developed for the determination of volatile aldehyde biomarkers (hexanal and heptanal) in human blood samples. In the derivatization and extraction procedure, 2,4-dinitrophenylhydrazine (DNPH) as derivatization reagent and formic acid as catalyzer were injected into the sample solution for derivatization with aldehydes, then the formed hydrazones was rapidly extracted by dispersive liquid–liquid microextraction with 1-dodecanol as extraction solvent. After centrifugation, the floated droplet was solidified in an ice bath and was easily removed for analysis. The effects of various experimental parameters on derivatization and extraction conditions were studied, such as the kind and volume of extraction solvent and dispersive solvent, the amount of derivatization reagent, derivatization temperature and time, extraction time and salt effect. The limit of detections (LODs) for hexanal and heptanal were 7.90 and 2.34 nmol L−1, respectively. Good reproducibility and recovery of the method were also obtained. The proposed method is an alternative approach to the quantification of volatile aldehyde biomarkers in complex biological samples, being more rapid and simpler and providing higher sensitivity compared with the traditional dispersive liquid–liquid microextraction (DLLME) methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号