首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The fabrication and implementation of aligned electrospun polyacrylonitrile (PAN) nanofibers as a stationary phase for ultra-thin layer chromatography (UTLC) is described. The aligned electrospun UTLC plates (AE-UTLC) were characterized to give an optimized electrospun mat consisting of high nanofiber alignment and a mat thickness of ∼25 μm. The AE-UTLC devices were used to separate a mixture of β-blockers and steroidal compounds to illustrate the properties of AE-UTLC. The AE-UTLC plates provided shorter analysis time (∼2–2.5 times faster) with improved reproducibility (as high as 2 times) as well as an improvement in efficiency (up to100 times greater) relative to non-aligned electrospun-UTLC (E-UTLC) devices.  相似文献   

2.
The application of carbon nanotube or nanorod/polyacrylonitrile (PAN) composite electrospun nanofibrous stationary phase for ultrathin layer chromatography (UTLC) is described herein. Multi-walled carbon nanotubes (MWCNTs) and edge-plane carbon (EPC) nanorods were prepared and electrospun with the PAN polymer solution to form composite nanofibers for use as a UTLC stationary phase. The analysis of laser dyes demonstrated the feasibility of utilizing carbon nanoparticle-filled electrospun nanofibers as a UTLC stationary phase. The contribution of MWCNT or EPC in changing selectivity of the stationary phase was studied by comparing the chromatographic behavior among MWCNT–PAN plates, EPC–PAN plates and pure PAN plates. Carbon nanoparticles in the stationary phase were able to establish strong π–π interactions with aromatic analytes. The separation of five polycyclic aromatic hydrocarbons (PAHs) demonstrated enhanced chromatographic performance of MWCNT-filled stationary phase by displaying substantially improved resolution and separation efficiency. Band broadening of the spots for MWCNT or EPC-filled UTLC stationary phases was also investigated and compared with that for pure PAN stationary phases. A 50% improvement in band dispersion was noted using the MWCNT based composite nanofibrous UTLC plates.  相似文献   

3.
Analysis of the thermo-mechanical behavior of electrospun thermoplastic polyurethane (TPU) block co-polymer nanofibers (glass transition temperature ∼−50 °C) is presented. Upon heating, nanofibers began to massively contract, at ∼70 °C, whereas TPU cast films started to expand. Radial wide-angle X-ray scattering (WAXS) profiles of the nanofibers and the films showed no diffraction peaks related to crystals, whereas their amorphous halo had an asymmetric shape, which can be approximated by two components, associated with hard and soft segments. During heating, noticeable changes in the contribution of these components were only observed in nanofibers. These changes, which were accompanied with an endothermic DSC peak, coinciding with the start of the nanofibers contraction, can be attributed to relaxation of an oriented stretched amorphous phase created during electrospinning. Such structure relaxation becomes possible when a portion of the hard segment clusters, forming an effective physical network, is destroyed upon heating.  相似文献   

4.
The application of electrospun nanofibers in electronic devices is limited due to their poor adhesion to conductive substrates. To improve this, a seed layer (SD) is introduced on the FTO substrate before the deposition of the electrospun composite nanofibers. This facilitates the release of interfacial tensile stress during calcination and enhances the interfacial adhesion of the AZO nanofiber films with the FTO substrate. Dye-sensitized solar cells (DSSC) based on these AZO nanofiber photoelectrodes have been fabricated and investigated. An energy conversion efficiency (η) of 0.54-0.55% has been obtained under irradiation of AM 1.5 simulated sunlight (100 mW/cm2), indicating a massive improvement of η in the AZO nanofiber film DSSCs after SD-treatment of the FTO substrate as compared to those with no treatment. The SD-treatment has been demonstrated to be a simple and facile method to solve the problem of poor adhesion between electrospun nanofibers and the conductive substrate.  相似文献   

5.
High strength electrospun polymer nanofibers made from BPDA-PDA polyimide   总被引:1,自引:0,他引:1  
A series of high molecular weight PI precursors, poly(p-phenylene biphenyltetracarboxamide acid), were synthesized from 3,4,3′,4′-biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PDA) by using intense mechanical stirring at −15 to 0 °C for 48-72 h. The as-synthesized PI precursor solution was used to make BPDA/PDA polyimide thin films and electrospun nanofibers. IR, Ostward Viscometer, CMT-8102 Electromechanical Universal Testing Machine and scanning electron microscope (SEM) were used for the characterizations of the as-synthesized PI precursor, PI films and nanofiber sheets. The high molecular weight BPDA/PDA PI thin films and electrospun nanofiber sheets possess excellent mechanical properties of up to 900 MPa tensile strength with up to 18.0 GPa E-modulus and up to 210 MPa tensile strength with up to 2.5 GPa E-modulus, respectively.  相似文献   

6.
Highly aligned and twisted composite Nylon 6 nanofibers incorporating multiwall carbon nanotubes (MWCNTs) were successfully electrospun, using a novel mechanism. It has been found that; ultrasound combined with high speed shearing is the simplest and most convenient method to improve the dispersion of MWCNTs into a polymer matrix with a certain loading. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were conducted to characterize the morphology of nanofibers, the dispersion of MWCNTs and their alignment inside the fiber body. By manipulating the electrical forces during electrospinning and applying mechanical stretching to the electrospun nanofibers, high polymer chain orientation and better alignment of the MWCNTs particles along the fiber axis was achieved. Twist was applied to the nanofibers for providing the required inter fiber lateral cohesion interaction and friction thus, spinning a continuous twisted composite yarn. SEM images show twisted yarns with diameters ranging between 5 and 10 μm. The twist effect of the parallel bundle was investigated by controlling the twist per unit length using a motor speed controller at values of 100, 250, 500, 750 and 1000 rpm. The paper also provides a comprehensive review of various yarn spinning mechanisms of electrospun nanofibers.  相似文献   

7.
Metallic nanoparticles of rhodium were prepared by using the newly synthesized N,N-bis-succinamide-based dendrimer as stabilizers. The Rh nanoparticles were spherical shaped with a particle size of ∼2 nm. The dendrimer Rh-encapsulated nanoparticles (Rh-DENs) were immobilized on glassy carbon electrode (GCE) and their electrocatalytic activity towards hydrogen peroxide reduction was investigated using cyclic voltammetry and chronoamperometry. The Rh-DENs modified GCE showed excellent electrocatalytic activity for hydrogen peroxide reduction reactions. The steady-state cathodic current response of the modified electrode at −0.3 V (vs SCE) in phosphate buffer (pH 7.0) showed a linear response to hydrogen peroxide concentration ranging from 8 to 30 μM with a detection limit and sensitivity of 5 μM and 0.03103 × 10−6 A μM−1, respectively.  相似文献   

8.
Salimi A  Hallaj R 《Talanta》2005,66(4):967-975
The performance of preheated glassy carbon electrode modified with carbon nanotubes is described. First glassy carbon electrode is heated for 5 min at 50 °C, then abrasive immobilization of multiwall carbon nanotubes on a preheated glassy carbon electrode was achieved by gentle rubbing of electrode surface on a filter paper supporting carbon nanotubes. Carbon nanotubes (CNTs)-modified glassy carbon electrodes exhibit strong and stable electrocatalytic response toward thiols oxidation in wide pH range. These properties permit an important decrease in over voltage for the oxidation of thiocytosine, glutathione and l-cysteine, as well as a dramatic increase in the peak currents in comparison with bare glassy carbon electrode. Furthermore, the thiols amperometric response of the coated electrodes is extremely stable, with more than 95% of the initial activity after 30 min stirring of 0.1 mM thiols. The electrocatalytic behavior is further exploited as a sensitive detection scheme for thiols detection by hydrodynamic amperometry. The substantial decrease in the overvoltage of the thiols oxidation associated with a stable amperometric response and antifouling properties of nanotubes films allow the development of highly sensitive thiols sensor without using any redox mediator. Such ability of carbon nanotubes to promote the thiols electron transfer reaction, short response time (5 s) and long-term stability, low detection limit, extended linear concentration range, high sensitivity suggest great promise for thiols amperometric sensors and detector for chromatographic analysis of thiol derivatives.  相似文献   

9.
Due to the high performance of glassy carbon in the aspects of mechanical strength, electrical conductivity and high corrosion resistance, etc., glassy carbon has been widely used in the electrochemistry. A new form of glassy carbon, glassy carbon microsphere, was utilized to couple with ionic liquid in preparing a new electrochemiluminescent platform for Ru(bpy)3Cl2. Room temperature ionic liquid has been proposed to be very interesting and efficient pasting binder to replace the non conductive organic binders for the fabrication of composite paste electrode. Attributed to the special characteristics of glassy carbon microspheres and room temperature ionic liquid [N-octylpyridium tetrafluoroborate (OPFP)], this new electrochemiluminescent sensor exhibited excellent electrochemiluminescent performance in Ru(bpy)32+ solution. We first found that fentanyl citrate could increase the ECL of Ru(bpy)32+, hence an ECL approach was developed for the determination of fentanyl citrate based on this glassy carbon microspheres based electrochemiluminescent platform with high sensitivity. Under the optimized conditions, the enhanced electrochemiluminescent intensity versus fentanyl citrate concentration was linear in the range of 1.0 × 10−8 to 1.0 × 10−4 mol L−1 with a detection limit of 8.5 × 10−9 mol L−1, and the relative standard deviation for 1.0 × 10−6 mol L−1 fentanyl citrate was 1.90% (n = 10). This protocol has extended the application scopes of glassy carbon material and promoted the application of glassy carbon microspheres in electroanalysis.  相似文献   

10.
Wang W  Zhang TJ  Zhang DW  Li HY  Ma YR  Qi LM  Zhou YL  Zhang XX 《Talanta》2011,84(1):71-77
A novel matrix, gold nanoparticles-bacterial cellulose nanofibers (Au-BC) nanocomposite was developed for enzyme immobilization and biosensor fabrication due to its unique properties such as satisfying biocompatibility, good conductivity and extensive surface area, which were inherited from both gold nanoparticles (AuNPs) and bacterial cellulose nanofibers (BC). Heme proteins such as horseradish peroxidase (HRP), hemoglobin (Hb) and myoglobin (Mb) were successfully immobilized on the surface of Au-BC nanocomposite modified glassy carbon electrode (GCE). The immobilized heme proteins showed electrocatalytic activities to the reduction of H2O2 in the presence of the mediator hydroquinone (HQ), which might be due to the fact that heme proteins retained the near-native secondary structures in the Au-BC nanocomposite which was proved by UV-vis and IR spectra. The response of the developed biosensor to H2O2 was related to the amount of AuNPs in Au-BC nanocomposite, indicating that the AuNPs in BC network played an important role in the biosensor performance. Under the optimum conditions, the biosensor based on HRP exhibited a fast amperometric response (within 1 s) to H2O2, a good linear response over a wide range of concentration from 0.3 μM to 1.00 mM, and a low detection limit of 0.1 μM based on S/N = 3. The high performance of the biosensor made Au-BC nanocomposite superior to other materials as immobilization matrix.  相似文献   

11.
KSb5S8 and its solid solution analogs with Rb and Tl were found to exhibit a reversible and tunable glass→crystal→glass phase transition. Selected members of this series were analyzed by differential scanning calorimetry to measure the effect of the substitution on the thermal properties. The solid solutions K1−xRbxSb5S8 exhibited clear deviations in melting and crystallization behavior and temperatures from the parent structure. The crystallization process of the glassy KSb5S8 as a function of temperature could clearly be followed with Raman spectroscopy. The thermal conductivity of both glassy and crystalline KSb5S8 at room temperature is ∼0.40 W/m K, among the lowest known values for any dense solid-state material. Electronic band structure calculations carried out on KSb5S8 and TlSb5S8 show the presence of large indirect band-gaps and confirm the coexistence of covalent Sb-S bonding and predominantly ionic K(Tl)?S bonding. Pair distribution function analyses based on total X-ray scattering data on both crystalline and glassy K1−xRbxSb5S8 showed that the basic structure-defining unit is the same and it involves a distorted polyhedron of “SbS7” fragment of ∼7 Å diameter. The similarity of local structure between the glassy and crystalline phases accounts for the facile crystallization rate in this system.  相似文献   

12.
A new SU-8 based microchip capillary electrophoresis (MCE) device has been developed for the first time with integrated electrochemical detection. Embedded electrophoretic microchannels have been fabricated with a multilayer technology based on bonding and releasing steps of stacked SU-8 films. This technology has allowed the monolithic integration in the device of the electrochemical detection system based on platinum electrodes. The fabrication of the chips presented in this work is totally compatible with reel-to-reel techniques, which guarantee a low cost and high reliability production. The influence of relevant experimental variables, such as the separation voltage and detection potential, has been studied on the SU-8 microchip with an attractive analytical performance. Thus, the effective electrical isolation of the end-channel amperometric detector has been also demonstrated. The good performance of the SU-8 device has been proven for separation and detection of the neurotransmitters, dopamine (DA) and epinephrine (EP). High efficiency (30,000-80,000 N/m), excellent precision, good detection limit (450 nM) and resolution (0.90-1.30) has been achieved on the SU-8 microchip. These SU-8 devices have shown a better performance than commercial Topas (thermoplastic olefin polymer of amorphous structure) microchips. The low cost and versatile SU-8 microchip with integrated platinum film electrochemical detector holds great promise for high-volume production of disposable microfluidic analytical devices.  相似文献   

13.
This paper demonstrates a new electrochemical method for the detection of ultratrace amount of 2,4,6-trinitrotoluene (TNT) with synthetic copolypeptide-doped polyaniline nanofibers. The copolypeptide, comprising of glutamic acid (Glu) and lysine (Lys) units, is in situ doped into polyaniline through the protonation of the imine nitrogen atoms of polyaniline by the free carboxylic groups of Glu segments, resulting in the formation of polyaniline nanofibers of emeraldine salt. The free amino groups of Lys segments at the surface of nanofibers provide the receptor sites of TNT through the formation of charge-transfer complex between the electron-rich amino groups and the electron-deficient aromatic rings. Adsorptive stripping voltammetry results demonstrate that the poly(Glu-Lys)-doped nanofibers confined onto glassy carbon electrodes exhibit a remarkable enriching effect and thus sensitive electrochemical response to TNT with a linear dynamic range of 0.5-10 μM and a detection limit down to 100 nM. Moreover, other kinds of nitro compounds show different redox behaviors from TNT at the doped nanofibers, and thus do not interfere with the electrochemical detection of TNT. This study essentially offers a new and simple method for electrochemical detection of ultratrace TNT.  相似文献   

14.
Abelson tyrosine-protein kinase 1 (ABL1) catalysed phosphorylation involves the addition of a phosphate group from ATP to the tyrosine residue on the substrate abltide. The phosphorylation reactions were carried out by incubating ABL1, ATP and the substrate abltide. Adsorption at the glassy carbon electrode surface in either reaction mixtures or control solutions, followed by differential pulse voltammetry in buffer allowed detection of the variation of abltide tyrosine residue oxidation peak reflecting the occurrence of the phosphorylation reaction. The effect of abltide, ATP and ABL1 concentrations as well as the time course of the phosphorylation reaction were studied. The influence of co-adsorption of ABL1, ATP and phosphorylated abltide was evaluated and the conditions for the electrochemical detection of ABL1-catalysed phosphorylation optimised. The Michaelis–Menten constant for abltide binding KM ∼ 4.5 μM, turnover number kcat ∼ 11 s−1 and enzyme efficiency kcat/KM ∼ 2.3 s−1 μM−1 were calculated. The inhibition of ABL1 by imatinib mesylate and danusertib was also electrochemically investigated and IC50 values of 0.53 and 0.08 μM determined.  相似文献   

15.
A sensitive, rapid and reliable electrochemical method based on voltammetry at single wall carbon nanotube (SWNT) modified edge plane pyrolytic graphite electrode (EPPGE) is proposed for the simultaneous determination of prednisolone and prednisone in human body fluids and pharmaceutical preparations. The electrochemical response of both the drugs was evaluated by osteryoung square wave voltammetry (OSWV) in phosphate buffer medium of pH 7.2. The modified electrode exhibited good electrocatalytic properties towards prednisone and prednisolone reduction with a peak potential of ∼−1230 and ∼−1332 mV respectively. The concentration versus peak current plots were linear for both the analytes in the range 0.01-100 μM and the detection limit (3σ/slope) observed for prednisone and prednisolone were 0.45 × 10−8, 0.90 × 10−8 M, respectively. The results of the quantitative estimation of prednisone and prednisolone in biological fluids were also compared with HPLC and the results were in good agreement.  相似文献   

16.
Mg2+ and Na+ doped rutile TiO2 nanofibers have been prepared through in situ electrospinning technique and calcination with poly(vinyl pyrrolidone) (PVP) nanofibers as sacrificed template. The as-prepared composite nanofibers are spin-coated onto a ceramic substrate with three pairs of carbon interdigital electrodes to measure its humidity sensing behaviors. The product exhibits high-speed response (2 s) and recovery (1 s) for detecting moisture. Additionally, under UV irradiation, a water contact angle (θ) of nearly 0° has been observed based on the product, providing our humidity sensor with the anti-fogged properties.  相似文献   

17.
An on-line microfluidic sensing device with an enzyme-modified pre-cell coupled to an amperometric detector for the monitoring of paracetamol in pharmaceutical formulations is described. Horseradish peroxidase (HRP) [EC 1.11.1.7], immobilized on a 3 μl pre-cell, in presence of hydrogen peroxide catalyses the oxidation of paracetamol to N-acetyl-p-benzoquinoneimine. The electrochemical reduction back to hydroquinone is detected on glassy carbon electrode surface at −0.10 V. The recovery of paracetamol from 10 samples ranged from 99.00 to 101.10%. This method could be used to determine paracetamol concentration in the range 0.35-100 μM (r = 0.997) with a limit of detection of 3.0 × 10−7 M and a relative standard deviation was less than 4.1% (n = 8). The method was successfully applied for the processing of as many as 20 samples per hour of paracetamol in pharmaceutical formulations.  相似文献   

18.
The electrochemical properties of valacyclovir, an antiviral drug, were investigated in pH range 1.8-12.0 by cyclic, differential pulse and square-wave voltammetry. The drug was irreversibly oxidized at a glassy carbon electrode in one or two oxidation steps, which are pH-dependent. For analytical purposes, a very resolved diffusion controlled voltammetric peak was obtained in Britton-Robinson buffer at pH 10.0 using differential pulse and square-wave modes. Limits of detection were 1.04 × 10−7 and 4.60 × 10−8 M for differential pulse and square-wave voltammetry, respectively. The applicability to direct assays of tablets, spiked human serum and simulated gastric fluid, was described.  相似文献   

19.
Proteinase K was successfully loaded inside ultrafine fibers of poly(ethylene glycol)-poly(l-lactide) (PELA) by emulsion electrospinning. A core/shell fiber structure was formed and verified by a transmission electron microscope. In vitro biodegradation of electrospun PELA membranes containing proteinase K (PELA-P) was examined in Tris-HCl buffer solution at pH 8.6 and 37 °C in comparison with electrospun PELA membranes without proteinase K. During biodegradation, mass loss, water absorption, pH value of the incubated buffer, fibrous morphology and thermal properties were monitored. Results suggested that PELA-P membranes degraded significantly faster than PELA membranes. A significant drop in pH value of the buffer after incubation of PELA-P membranes for 1 d was observed, and after 7 d, PELA-P membranes lost their fibrous appearance and masses almost completely. In contrast, electrospun PELA membranes did not show any obvious changes. The obtained electrospun PELA-P membranes exhibited self-accelerated biodegradability and could benefit drug controlled release and tissue regeneration.  相似文献   

20.
A nitrite sensor based on immobilized Dawson-type tungstophosphate α-K7[H4PW18O62]·18H2O (PW18) in multilayers of charged polyelectrolyte poly(allylamine hydrochloride) (PAH) on a glassy carbon electrode is described. A nitrite sensor manufactured with 10 layers has a sensitivity of ∼4 nA/μM nitrite, fast response time (<6 s), low detection limit (∼0.1 μM), high selectivity towards endogenous interferences such as nitrate and molecular oxygen, a linear range from 0.1 μM to at least 20 mM nitrite and was stable for at least 2 months. In addition, such nitrite sensors can operate in a pH range from 1 to 9, and the sensitivity can be increased by increasing the number of layers at the expense of increasing the response time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号