首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel temperature-controlled headspace liquid-phase microextraction (TC-HS-LPME) device was established in which volatile solvents could be used as extractant. In this device, a PTFE vial cap with a cylindrical cavity was used as the holder of the extraction solvent. Up to 40 μl of extraction solvent could be suspended in the cavity over the headspace of aqueous sample in the vial. A cooling system based on thermoelectric cooler (TEC) was used to lower the temperature of extractant in PTFE vial cap to reduce the loss of volatile solvent during extraction process and increase the extraction efficiency. The selection of solvents for HS-LPME was then extended to volatile solvents, such as dichloromethane, ethyl acetate and acetone. The use of volatile extraction solvents instead of semi-volatile solvent reduced the interference of the large solvent peak to the analytes peaks, and enhanced the compatibility of HS-LPME with gas chromatograph (GC). Moreover, the use of larger volume of extractant solvent increases the extraction capacity and the injection volume of GC after extraction, thus improving detection limits. Several critical parameters of this technique were investigated by using chlorobenzenes (CBs) as the model analytes. High enrichment factors (498–915), low limits of detection (0.004–0.008 μg/L) and precision (3.93–5.27%) were obtained by using TC-HS-LPME/GC-FID. Relative recoveries for real samples were more than 83%.  相似文献   

2.
Zhang PP  Shi ZG  Feng YQ 《Talanta》2011,85(5):2581-2586
In this work, a two-step liquid-phase microextraction (LPME) method was presented for the extraction of phenols in environmental water samples. Firstly, the polar phenol in water samples (donor phase) was transferred to 1-octanol (extraction mesophase) by magnetic stirring-assisted LPME. Subsequently, target analytes in the 1-octanol was back extracted into 0.1 mol/L sodium hydroxide solution (acceptor phase) by vortex-assisted LPME. By combination of the two-step LPME, the enrichment factors were multiplied. The main features of this two-step LPME for phenols lie in the following aspects. Firstly, the extraction can be accomplished within relatively short time (ca. 20 min). Secondly, it was compatible with HPLC analysis, avoiding derivatization step that is generally necessary for GC analysis. Thirdly, high enrichment factors (296-954 fold) could be obtained for these analytes. Under the optimized conditions, the linearities were 10-1000, 1-500, 1-500, 5-500 and 1-500 ng/mL for different phenols with all regression coefficients higher than 0.9985. The limits of detection were in the range from 0.3 to 3.0 ng/mL for these analytes. Intra-and inter-day relative standard deviations were below 7.6%, indicating a good precision of the proposed method.  相似文献   

3.
Ling DS  Xie HY  He YZ  Gan WE  Gao Y 《Journal of chromatography. A》2010,1217(49):7807-7811
An integrative coupling method of headspace liquid-phase microextraction (HS-LPME) and capillary zone electrophoresis (CZE) was proposed in this paper. In the method, a separation capillary was used to create a microextraction droplet of the running buffer solution of CZE, hold the droplet at the capillary inlet, extract analytes of sample solutions in the headspace of a sample vial, inject concentrated analytes into the capillary and separate the analytes by CZE. The proposed method was applied to determine the preservatives of benzoic acid and sorbic acid in soy sauce and soft drink samples, in which the running buffer solution of 50 mmol/L tetraborate (pH 9.2) was directly used to form the acceptor droplet at the capillary inlet by pressure, and the preservatives in a 6-mL sample solution containing 0.25 g/mL NaCl were extracted at 90°C for 30 min in the headspace of a 14-mL sample vial. Then the concentrated preservatives were injected into the capillary at 10 cm height difference for 20 s and separated by CZE. The enrichment factors of benzoic acid and sorbic acid achieved 266 and 404, and the limits of detection (LODs) were 0.03 and 0.01 μg/mL (S/N=3), respectively. The recoveries were in the range of 88.7-105%. The integrative coupling method of HS-LPME and CZE was simple, convenient, reliable and suitable for concentrating volatile and semi-volatile organic acids and eliminating matrix interferences of real samples.  相似文献   

4.
There is a trend towards the use of enrichment techniques such as microextraction in the analysis of trace chemicals. Based on the theory of ideal gases, theory of gas chromatography and the original headspace liquid phase microextraction (HS-LPME) technique, a simple gas flow headspace liquid phase microextraction (GF-HS-LPME) technique has been developed, where the extracting gas phase volume is increased using a gas flow. The system is an open system, where an inert gas containing the target compounds flows continuously through a special gas outlet channel (D = 1.8 mm), and the target compounds are trapped on a solvent microdrop (2.4 μL) hanging on the microsyringe tip, as a result, a high enrichment factor is obtained. The parameters affecting the enrichment factor, such as the gas flow rate, the position of the microdrop, the diameter of the gas outlet channel, the temperatures of the extracting solvent and of the sample, and the extraction time, were systematically optimized for four types of polycyclic aromatic hydrocarbons. The results were compared with results obtained from HS-LPME. Under the optimized conditions (where the extraction time and the volume of the extracting sample vial were fixed at 20 min and 10 mL, respectively), detection limits (S/N = 3) were approximately a factor of 4 lower than those for the original HS-LPME technique. The method was validated by comparison of the GF-HS-LPME and HS-LPME techniques using data for PAHs from environmental sediment samples.  相似文献   

5.
A method coupling needle-based derivatization headspace liquid-phase microextraction with gas chromatography-mass spectrometry (HS-LPME/GC-MS) was developed to determine volatile organic acids in tobacco. The mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and decane was utilized as the solvent for HS-LPME, resulting that extraction and derivatization were simultaneously completed in one step. The solvent served two purposes. First, it pre-concentrated volatile organic acids in the headspace of tobacco sample. Second, the volatile organic acids extracted were derivatized to form silyl derivatives in the drop. The main parameters affecting needle-based derivatization HS-LPME procedure such as extraction and derivatization reagent, microdrop volume, extraction and derivatization time, and preheating temperature and preheating time were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R(2)> or =0.9804) and good repeatability (RSDs< or =15.3%, n=5) for 16 analytes in spiked standard analytes sample were achieved. The method has the additional advantages that at the same time it is simple, fast, effective, sensitive, selective, and provides an overall profile of volatile organic acids in the oriental tobacco. This paper does offer an alternative approach to determine volatile organic acids in tobacco.  相似文献   

6.
Dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD) was developed for extraction and determination of chloramphenicol (CAP) and thiamphenicol (THA) in honey. In this extraction method, 1.0 mL of acetonitrile (as dispersive solvent) containing 30 μL 1,1,2,2-tetrachloroethane (as extraction solution) was rapidly injected by syringe into a 5.00-mL water sample containing the analytes, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the nature and volume of extraction solvent and dispersive solvent, extraction time, sample solution pH, sample volume and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 3 to 2000 μg kg−1 for target analytes. The enrichment factors for CAP and THA were 68.2 and 87.9, and the limits of detection (S/N = 3) were 0.6 and 0.1 μg kg−1, respectively. The relative standard deviations (RSDs) for the extraction of 10 μg kg−1 of CAP and THA were 4.3% and 6.2% (n = 6). The main advantages of DLLME-HPLC method are simplicity of operation, rapidity, low cost, high enrichment factor, high recovery, good repeatability and extraction solvent volume at microliter level. Honey samples were successfully analyzed using the proposed method.  相似文献   

7.
The present work has for the first time described nano-electromembrane extraction (nano-EME). In nano-EME, five basic drugs substances were extracted as model analytes from 200 μL acidified sample solution, through a supported liquid membrane (SLM) of 2-nitrophenyl octyl ether (NPOE), and into approximately 8 nL phosphate buffer (pH 2.7) as acceptor phase. The driving force for the extraction was an electrical potential sustained over the SLM. The acceptor phase was located inside a fused silica capillary, and this capillary was also used for the final analysis of the acceptor phase by capillary electrophoresis (CE). In that way the sample preparation performed by nano-EME was coupled directly with a CE separation. Separation performance of 42,000–193,000 theoretical plates could easily be obtained by this direct sample preparation and injection technique that both provided enrichment as well as extraction selectivity. Compared with conventional EME, the acceptor phase volume in nano-EME was down-scaled by a factor of more than 1000. This resulted in a very high enrichment capacity. With loperamide as an example, an enrichment factor exceeding 500 was obtained in only 5 min of extraction. This corresponded to 100-times enrichment per minute of nano-EME. Nano-EME was found to be a very soft extraction technique, and about 99.2–99.9% of the analytes remained in the sample volume of 200 μL. The SLM could be reused for more than 200 nano-EME extractions, and memory effects in the membrane were avoided by effective electro-assisted cleaning, where the electrical potential was actively used to clean the membrane.  相似文献   

8.
A continuous flow liquid membrane extraction (CFLME)-C18 precolumn-liquid chromatography system was developed for preconcentration and determination of chlorinated phenols (CPs). After preconcentration by CFLME, which is based on the combination of continuous flow liquid-liquid extraction and supported liquid membrane, CPs were enriched in 960 μl of 0.5 mol l−1 NaOH used as acceptor. This acceptor was on-line neutralized and transported onto the C18 precolumn where analytes were absorbed and focused. Then the focused analytes were injected onto the C18 analytical column for separation and detected at 215 nm with a diode array detector. CFLME related parameters such as flow rates, pH of donor and acceptor concentration were optimized. The proposed method presents detection limits of 0.02-0.09 μg l−1 (S/N=3) when 100 ml samples were enriched. The proposed method was successfully applied to determine CPs in tap water and river water samples with spiked recoveries in the range of 70-121%.  相似文献   

9.
A new method for separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction (SPE) with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES has been developed. The separation of the target analytes from the aqueous solution containing the target analytes and Bismuthiol-II-immobilized magnetic nanoparticles was simply achieved by applying external magnetic field. Optimal experimental conditions including pH, sample volume, eluent concentration and volume and co-existing ions have been studied and established. Under the optimal experimental conditions, the detection limits for Cr, Cu and Pb with enrichment factors of 96, 95 and 87 were found to be 0.043, 0.058 and 0.085 ng mL−1 and their relative standard deviations (R.S.D.s) were 3.5%, 4.6% and 3.7% (n = 5, C = 2 ng mL−1), respectively. The method was validated with certified reference material (GBW50009-88) of environmental water sample and the analytical results coincided well with the certified values. Furthermore, the method was successfully applied to the determination of target analytes in river and lake water samples. Compared with established methods, the proposed method is characterized with high enrichment factor, fast separation and low detection limits.  相似文献   

10.
《Electrophoresis》2018,39(14):1771-1776
An ionic liquid‐based headspace in‐tube liquid‐phase microextraction (IL‐HS‐ITLPME) in‐line coupled with CE is proposed. The method is capable of quantifying trace amounts of phenols in environmental water samples. In the newly developed method, simply by placing a capillary injected with ionic liquids (IL) in the HS above the aqueous sample, volatile phenols were extracted into the IL acceptor phase in the capillary. After extraction, electrophoresis of the phenols in the capillary was carried out. Extraction parameters such as the extraction time, extraction temperature, ionic strength, volume of the sample solution, and IL types were systematically investigated. Under the optimized conditions, enrichment factors for four phenols were from 1510 to 1985. The proposed method provided a good linearity, low limits of detection (below 5.0 ng/mL), and good repeatability of the extractions (RSDs below 6.7%, n = 6). This method was then utilized to analyze two real environmental samples of Xiaoxi Lake and tap water, obtaining acceptable recoveries and precisions. Compared with the usual HS‐ITLPME for CE, IL‐HS‐ITLPME‐CE is a simple, low cost, fast, and environmentally friendly preconcentration technique.  相似文献   

11.
Jun Xiong  Man He 《Talanta》2010,82(3):969-2619
A method of hollow fiber (HF) liquid phase microextraction (LPME) combined with gas chromatography (GC)-flame ionization detection (FID) was developed for the simultaneous quantification of trace amphetamine (AP), methamphetamine (MA), methylenedioxyamphetamine (MDA), methylenedioxymethamphetamine (MDMA), caffeine and ketamine (KT) in drug abuser urine samples. The factors affecting on the extraction of six target analytes by HF-LPME were investigated and optimized, and the subsequent analytical performance evaluation and real sample analysis were performed by the extraction of six target analytes in sample solution containing 30% NaCl (pH 12.5) for 20 min with extraction temperature of 30 °C and stirring rate of 1000 rpm. Under such optimal conditions, the limits of detection (LODs, S/N = 3) for the six target analytes were ranged from 8 μg/L (AP, KT) to 82 μg/L (MDA), with the enrichment factors (EFs) of 5-227 folds, and the relative standard deviations (RSDs, n = 7) were in the range of 6.9-14.1%. The correlation coefficients of the calibration for the six target analytes over the dynamic linear range were higher than 0.9958. The application feasibility of HF-LPME-GC-FID in illegal drug monitoring was demonstrated by analyzing drug abuser urine samples, and the recoveries of target drugs for the spiked sample ranging from 75.2% to 119.3% indicated an excellent anti-interference capability of the developed method. The proposed method is simple, effective, sensitive and low-cost, and provides a much more accurate and sensitive detection platform over the conventional analytical techniques (such as immunological assay) for drug abuse analysis.  相似文献   

12.
An electro membrane extraction (EME) methodology was utilized to study the isolation of some environmentally important pollutants, such as chlorophenols, from aquatic media based upon the electrokinetic migration process. The analytes were transported by application of an electrical potential difference over a supported liquid membrane (SLM). A driving force of 10 V was applied to extract the analytes through 1-octanol, used as the SLM, into a strongly alkaline solution. The alkaline acceptor solution was subsequently analyzed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection. The parameters influencing electromigration, including volumes and pH of the donor and acceptor phases, the organic solvent used as the SLM, and the applied voltage and its duration, were investigated to find the most suitable extraction conditions. Since the developed method showed a rather high degree of selectivity towards pentachlorophenol (PCP), validation of the method was performed using this compound. An enrichment factor of 23 along with acceptable sample clean-up was obtained for PCP. The calibration curve showed linearity in the range of 0.5–1000 ng/mL with a coefficient of estimation corresponding to 0.999. Limits of detection and quantification, based on signal-to-noise ratios of 3 and 10, were 0.1 and 0.4 ng/mL, respectively. The relative standard deviation of the analysis at a PCP concentration of 0.5 ng/mL was found to be 6.8% (n = 6). The method was also applied to the extraction of this contaminant from seawater and an acceptable relative recovery of 74% was achieved at a concentration level of 1.0 ng/mL.  相似文献   

13.
Farajzadeh MA  Djozan D  Khorram P 《Talanta》2011,85(2):1135-1142
A novel sample preparation technique, the microextraction method based on a dynamic single drop in a narrow-bore tube, coupled with gas chromatography-flame ionization detection (GC-FID) is presented in this paper. The most important features of this method are simplicity and high enrichment factors. In this method, a microdrop of an extraction solvent assisted by an air bubble was repeatedly passed through a narrow-bore closed end tube containing aqueous sample. It has been successfully used for the analysis of some pesticides as model analytes in aqueous samples. Parameters affecting the method's performance such as selection of extraction solvent type and volume, number of extractions, volume of aqueous sample (tube length), and salt effect were studied and optimized. Under the optimal conditions, the enrichment factors (EFs) for triazole pesticides were in the range of 141-214 and the limits of detection (LODs) were between 2 and 112 μg L−1. The relative standard deviations (C = 1000 μg L−1, n = 6) were obtained in the range of 2.9-4.5%. The recoveries obtained for the spiked well water and grape juice samples were between 71 and 106%. Low cost, relatively short sample preparation time and less solvent consumption are other advantages of the proposed method.  相似文献   

14.
A simple, accurate and sensitive method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–tandem mass spectrometry (GC–MS/MS) was developed for the analysis of 4-ethylguaiacol, 4-ethylphenol, 4-vinylguaiacol and 4-vinylphenol in beer. The effect of the presence of CO2 in the sample on the extraction of analytes was examined. The influence on extraction efficiency of different fibre coatings, of salt addition and stirring was also evaluated. Divinylbenzene/carboxen/polydimethylsiloxane was selected as extraction fibre and was used to evaluate the influence of exposure time, extraction temperature and sample volume/total volume ratio (Vs/Vt) by means of a central composite design (CCD). The optimal conditions identified were 80 °C for extraction temperature, 55 min for extraction time and 6 mL of beer (Vs/Vt 0.30). Under optimal conditions, the proposed method showed satisfactory linearity (correlation coefficients between 0.993 and 0.999), precision (between 6.3% and 9.7%) and detection limits (lower than those previously reported for volatile phenols in beers). The method was applied successfully to the analysis of beer samples. To our knowledge, this is the first time that a HS-SPME based method has been developed to determine simultaneously these four volatile phenols in beers.  相似文献   

15.
In this article, a simple new solvent microextraction technique is described for the extraction of ionizable organic compounds. This involves performing simultaneous forward- and back-extraction across an organic film immobilized in the pores of a porous polypropylene hollow fiber. Four chlorophenoxyacetic acid herbicides were chosen as model compounds. The target compounds are extracted from the stirred acidic aqueous sample (adjusted to 0.5 M HCl; donor phase) through a thin film of an organic solvent residing in the pores of a polypropylene hollow fiber; they are then finally extracted into another alkaline aqueous phase (1 M NaOH; acceptor phase). Both ends of the fiber are pressure-sealed. The acceptor phase was analyzed by liquid chromatography (LC). This method gave good enrichment (by a factor of 438-553) of the analytes in 40 min extraction time with reasonably good reproducibility. The analytical potential of the method was demonstrated by applying the method to spiked river water sample.  相似文献   

16.
A novel method, dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD), has been developed for the determination of three phthalate esters (dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP)) in water samples. A mixture of extraction solvent (41 μL carbon tetrachloride) and dispersive solvent (0.75 mL acetonitrile) were rapidly injected into 5.0 mL aqueous sample for the formation of cloudy solution, the analytes in the sample were extracted into the fine droplets of CCl4. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the kind and volume of extraction solvent and dispersive solvent, extraction time and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 5 to 5000 ng mL−1 for target analytes. The enrichment factors for DMP, DEP and DnBP were 45, 92 and 196, respectively, and the limits of detection were 1.8, 0.88 and 0.64 ng mL−1, respectively. The relative standard deviations (R.S.D.) for the extraction of 10 ng mL−1 of phthalate esters were in the range of 4.3-5.9% (n = 7). Lake water, tap water and bottled mineral water samples were successfully analyzed using the proposed method.  相似文献   

17.
Mulugeta M  Megersa N 《Talanta》2004,64(1):101-108
Supported liquid membrane (SLM) method for preconcentration and enrichment of the two bipyridilium herbicides, namely diquat and paraquat, from environmental water samples has been developed. The permanently charged cationic herbicides were extracted from a flowing aqueous solution to a stagnant acidic acceptor solution across a liquid membrane containing 40% (v/v) di-(2-ethylhexyl) phosphoric acid dissolved in di-n-hexyl ether. The mass transfer of analytes is driven by the counter-coupled transport of hydrogen ions from the acceptor to the donor phase. The efficiency of the extraction process depends on the donor solution pH, the amount of the mobile carrier added to the liquid membrane and the concentration of the counter ion in the acceptor solution. The applicability of the method for extraction of these quaternary ammonium herbicides from environmental waters was also investigated by spiking analyte sample solutions in river water. With 24 h sample enrichment concentrations of diquat and paraquat down to ca. 10 ng/L could be detected in environmental waters.  相似文献   

18.
The simultaneous extraction of acidic and basic analytes from a particular sample is a challenging task. In this work, electromembrane extraction (EME) of acidic non-steroidal anti-inflammatory drugs and basic β-blockers in a single step was carried out for the first time. It was shown that by designing an appropriate compartmentalized membrane envelope, the two classes of drugs could be electrokinetically extracted by a 300 V direct current electrical potential. This method required only a very short 10-min extraction time from a pH-neutral sample, with a small amount (50 μL) of organic solvent (1-octanol) as the acceptor phase. Analysis was carried out using gas chromatography–mass spectrometry after derivatization of the analytes. Extraction parameters such as extraction time, applied voltage, pH range, and concentration of salt added were optimized. The proposed EME technique provided good linearity with correlation coefficients from 0.982 to 0.997 over a concentration range of 1–200 μg L−1. Detection limits of the drugs ranged between 0.0081 and 0.26 μg L−1, while reproducibility ranged from 6 to 13% (n = 6). Finally, the application of the new method to wastewater samples was demonstrated.  相似文献   

19.
Jing-Shan Chiang 《Talanta》2007,71(2):882-886
Dynamic hollow fiber liquid-phase microextraction (HF-LPME) coupled with gas chromatography with flame ionization detection (GC-FID) and GC-electron capture detecion (GC-ECD) was used for quantification of toxic haloethers in lake water. The analytes were extracted from 5 ml of aqueous sample using 4 μl of organic solvent through a porous polypropylene hollow fiber. The effects on extraction performance of solvent selection, agitation rate, extraction time, extraction temperature, concentration of salt added and volumes of solvent for extraction and injection were optimized. The proposed method provided a good average enrichment factor of up to 231-fold, reasonable reproducibility ranging from 9 to 12% (n = 3), and good linearity (R2 ≧ 0.9973) for spiked water samples. Method detection limits (MDLs) ranged from 0.55 to 4.30 μg/l for FID and 0.11-0.34 μg/l for ECD (n = 7).  相似文献   

20.
A simple and efficient dual preconcentration method of on-column liquid–liquid–liquid microextraction (LLLME) coupled with base stacking was developed for capillary zone electrophoresis (CZE) in this paper. Four N-methyl carbamates were used as target compounds to evaluate the enrichment means. The carbamates in sample solutions (donor phase) were extracted into a dodecanol phase immobilized on a porous hollow fiber, hydrolyzed and back extracted into 0.20 μL running buffer (acceptor phase) of 30 mmol/L methylamine hydrochloride (pH 11.6) containing 0.5 mmol/L tetradecyltrimethylammonium bromide inside the hollow fiber, stacked further with 0.5 mol/L NaOH injected at −10 kV for 60 s, and separated by CZE. Analytical parameters affecting the LLLME, base stacking and CZE were investigated, including sample solution volume, pH and temperature, extraction time, stirring rate, buffer component, buffer pH, NaOH concentration, stacking time, etc. The enrichment factors of the carbamates were higher than 1100. The relative standard deviation (RSD) of peak height and limits of detection (LODs) were 4.5–5.5% (n = 6) and 2–4 ng/mL (S/N = 3) for standard solutions, respectively. The proposed method was applied to the analysis of vegetable and fruit samples with the RSD less than 6.0% (n = 3) and LODs of 6–10 ng/g (S/N = 3). The calibration solutions were prepared by diluting the stock solutions with blank sample solutions, and the calibration concentrations ranged from 0.012 to 1.0 μg/mL (r > 0.9951). The analytical results demonstrated that the LLLME coupled with base stacking was a simple, convenient and reliable on-column sample pretreatment method for the analysis of anionic analytes in CZE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号