共查询到20条相似文献,搜索用时 15 毫秒
1.
D. Bratkowska N. Fontanals F. Borrull P.A.G. Cormack D.C. Sherrington R.M. Marcé 《Journal of chromatography. A》2010,1217(19):3238-3243
Three new hypercrosslinked polymers with hydrophilic character arising from hydroxyl moieties in their skeletons have been prepared in microsphere format and applied to the off-line solid-phase extraction (SPE) of polar compounds from water samples. For sample volumes of 1000 ml, the recoveries of various polar pesticides, such as oxamyl, methomyl, selected phenolic compounds, as well as some pharmaceuticals, were close to 90%. The HXLPP-polar polymer with the best performance characteristics was applied to real samples. Its performance was also compared to commercially available sorbents, such as LiChrolut EN (hydrophobic, hypercrosslinked), Oasis HLB (hydrophilic, macroporous) and Isolute ENV+ (hydrophilic, hypercrosslinked); the new sorbent out-performed the commercially available sorbents. The polymer was applied successfully in off-line SPE of river water samples followed by liquid chromatography and ultraviolet detection, providing a good linear range and detection limits of 0.2 μg l−1 for the majority of the compounds, with the exception of oxamyl, methomyl, guaiacol and salicylic acid where the detection limit was 0.5 μg l−1. 相似文献
2.
D Bratkowska N Fontanals S Ronka AW Trochimczuk F Borrull RM Marcé 《Journal of separation science》2012,35(15):1953-1958
Two imidazolium supported ionic liquid phases (SILPs) containing different anions, trifluoromethanesulphonate [CF(3) SO(3) (-) ], and tetrafluoroborate [BF(4) (-) ], were synthesized and evaluated as solid-phase extraction sorbents for extracting acidic pharmaceuticals from aqueous samples under strong anion-exchange conditions, which include an effective cleanup of the sample. The best SILP material [MI(+) ][CF(3) SO(3) (-) ] was selected and successfully applied to the determination of acidic pharmaceuticals in different types of water samples (river water and effluent wastewater). The results were then compared to the previously synthesized SILP material based on [MI(+) ][CF(3) COO(-) ] and the commercially available Oasis MAX sorbent. 相似文献
3.
Dominika Bratkowska Arlene Davies Núria Fontanals Peter A.G. Cormack Francesc Borrull David C. Sherrington Rosa M. Marcé 《Journal of separation science》2012,35(19):2621-2628
Two novel high‐specific surface area polymeric sorbents (HXLPP‐SAXa and HXLPP‐SAXb) were synthesised and evaluated as solid‐phase extraction sorbents. The novel sorbents under study are based on hypercrosslinked polymer microspheres and designed specifically to offer ion‐exchange properties; the specific polymers of interest in the current work have been chemically modified in such a way as to impart a tuneable level of strong anion‐exchange character onto the sorbents. The novel sorbents were applied as strong anion‐exchange sorbents in solid‐phase extraction studies, with the goal being to selectively extract a group of acidic compounds from complex environmental samples in an efficient manner. Out of two HXLPP‐SAX resins evaluated in this study, it was found that the sorbent with the lower ion‐exchange capacity (HXLPP‐SAXa) gave rise to the best overall performance characteristics and, indeed, was found to compare favourably to the solid‐phase extraction performance of commercial strong anion‐exchange sorbents. When the HXLPP‐SAXa sorbent was applied to the solid‐phase extraction of environmental water samples, the result showed quantitative and selective extraction of low levels of acidic pharmaceuticals from 500 mL of river water and 100 mL of effluent wastewater. 相似文献
4.
Selective solid-phase extraction of bisphenol A using molecularly imprinted polymers and its application to biological and environmental samples 总被引:1,自引:0,他引:1
Zhang JH Jiang M Zou L Shi D Mei SR Zhu YX Shi Y Dai K Lu B 《Analytical and bioanalytical chemistry》2006,385(4):780-786
Molecularly imprinted polymers (MIPs) were prepared using bisphenol A (BPA) as a template by precipitation polymerization. The polymer that had the highest binding selectivity and ability was used as solid-phase extraction (SPE) sorbents for direct extraction of BPA from different biological and environmental samples (human serum, pig urine, tap water and shrimp). The extraction protocol was optimized and the optimum conditions were as follows: conditioning with 5 mL methanol–acetic acid (3:1), 5 mL methanol, 5 mL acetonitrile and 5 mL water, respectively, loading with 5 mL aqueous samples, washing with 1 mL acetonitrile, and eluting with 3 mL methanol. MIPs can selectively recognize, effectively trap and preconcentrate BPA over a concentration range of 2–20 μM. Recoveries ranged from 94.03 to 105.3 %, with a relative standard deviation lower than 7.9 %. Under the optimal condition, molecularly imprinted SPE recoveries of spiked human serum, pig urine, tap water and shrimp were 65.80, 82.32, 76.00 and 75.97 %, respectively, when aqueous samples were applied directly. Compared with C18 SPE, a better baseline, better high-performance liquid chromatography separation efficiency and higher recoveries were achieved after molecularly imprinted SPE.
相似文献
5.
A novel multi-templates molecularly imprinted polymer (MIP), using acidic pharmaceuticals mixture (ibuprofen (IBP), naproxen (NPX), ketoprofen (KEP), diclofenac (DFC), and clofibric acid (CA)) as the template, was prepared as solid-phase extraction (SPE) material for the quantitative enrichment of acidic pharmaceuticals in environmental samples and off-line coupled with liquid chromatography–mass spectrometry (LC/MS/MS). Washing solvent was optimized in terms of kind and volume for removing the matrix constituents nonspecifically adsorbed on the MIP. When 1 L of water sample spiked at 1 μg/L was loaded onto the cartridge, the binding capacity of the MIP cartridge were 48.7 μg/g for KEP, 60.7 μg/g for NPX, 52 μg/g for CA, 61.3 μg/g for DFC and 60.7 μg/g for IBP, respectively, which are higher than those of the commercial single template MIP in organic medium (e.g. toluene) reported in the literature. Recoveries of the five acidic pharmaceuticals extracted from 1 L of real water samples such as lake water and wastewater spiked at 1 μg/L were more than 95%. The recoveries of acidic pharmaceuticals extracted from 10-g sediment sample spiked at the 10 ng/g level were in the range of 77.4–90.6%. To demonstrate the potential of the MIP obtained, a comparison with commercial C18 SPE cartridge was performed. Molecularly imprinted solid-phase extraction (MISPE) cartridge showed higher recoveries than commercial C18 SPE cartridge for acidic pharmaceuticals. These results showed the suitability of the MISPE method for the selective extraction of a group of structurally related compounds such as acidic pharmaceuticals. 相似文献
6.
Development of a selective molecularly imprinted polymer-based solid-phase extraction for indomethacin from water samples 总被引:1,自引:0,他引:1
A selective molecularly imprinted solid-phase extraction (MISPE) for indomethacin (IDM) from water samples was developed.
Using IDM as template molecule, acrylamide (AM) or methacrylic acid (MAA) as functional monomer, ethylene dimethacrylate (EDMA)
as crosslinker, and bulk or suspension polymerization as the synthetic method, three molecularly imprinted polymers (MIPs)
were synthesized and characterized with a rebinding experiment. It was found that the MIP of AM-EDMA produced by bulk polymerization
showed the highest binding capacity for IDM, and so it was chosen for subsequent experiments, such as those testing the selectivity
and recognition binding sites. Scatchard analysis revealed that at least two kinds of binding sites formed in the MIP, with
the dissociation constants of 7.8 μmol L−1 and 127.2 μmol L−1, respectively. Besides IDM, three structurally related compounds — acemetacin, oxaprozin and ibuprofen — were employed for
selectivity tests. It was observed that the MIP exhibited the highest selective rebinding to IDM. Accordingly, the MIP was
used as a solid-phase extraction sorbent for the extraction and enrichment of IDM in water samples. The extraction conditions
of the MISPE column for IDM were optimized to be: chloroform or water as loading solvent, chloroform with 20% acetonitrile
as washing solution, and methanol as eluting solvent. Water samples with or without spiking were extracted by the MISPE column
and analyzed by HPLC. No detectable IDM was observed in tap water and the content of IDM in a river water sample was found
to be 1.8 ng mL−1. The extraction efficiencies of the MISPE column for IDM in spiked tap and river water were acceptable (87.2% and 83.5%,
respectively), demonstrating the feasibility of the prepared MIP for IDM extraction.
Figure Molecularly imprinted polymer-based solid-phase extraction for indomethacin 相似文献
7.
To obtain a highly selective material for the antibiotic chloramphenicol, which has several harmful side effects in humans,
different molecularly imprinted polymers (MIPs) were prepared. In order to avoid a major traditional drawback associated with
MIPs of residual template bleeding, molecules that are structurally related to chloramphenicol were used as templates for
polymer synthesis. Chromatographic evaluation indicated that the employed template imparted a significant influence on the
recognition properties of the corresponding polymer. A strong retention of chloramphenicol under nonpolar elution conditions
(k = 68.03, IF = 17.72) and under aqueous elution conditions (k = 92.44, IF = 1.35) was achieved. After chromatographic evaluation, the MIP was utilized as the recognition sorbent in a
solid-phase extraction to determine chloramphenicol using either an organic or aqueous washing solvent. Recoveries of nearly
100% from the chloramphenicol standard solution and nearly 90% from honey samples spiked with chloramphenicol were attained.
Furthermore, the applicability of the MIP for sample cleanup was demonstrated. 相似文献
8.
A new method that utilizes asparagine modified attapulgite as a solid phase extractant has been developed for preconcentration of trace Fe(III) prior to the measurement by inductively coupled plasma optical emission spectrometry. Characterization of the surface modification was performed on the basis of Fourier transform infrared spectra. The separation/preconcentration conditions of the analyte were investigated, including the pH value, the shaking time, the sample ?ow rate and volume, the elution condition and the interfering ions. At pH 4, the new adsorbent had relatively high capacity and enrichment factor compared to other methods reported so far. The adsorbed Fe(III) was quantitatively eluted by 2 mL of 0.5 mol L−1 HCl. Common coexisting ions did not interfere with the separation. The detection limit of the method was 0.19 μg L−1. The relative standard deviation was 3.4% (n = 8) which indicated that the method had good precision for the analysis of trace Fe(III) in solution samples. The method was validated using two certified reference materials and has been applied for the determination of trace Fe(III) in biological and natural water samples with satisfactory results. 相似文献
9.
Synthesis and application of a hydrophobic hypercrosslinked polymeric resin for removing VOCs from humid gas stream 总被引:1,自引:0,他引:1
A hydrophobic hypercrosslinked polymeric resin LC-1 was prepared and characterized.The properties of LC-1 resin were compared with those of a commercial hypercrosslinked polymer NDA-201 resin.In addition,the dynamic adsorption of trichloroethylene(TCE)onto LC.1 under dry and humid conditions at 303 K was investigated,the result shows that LC-1possesses high hydrophobic property and can remove TCE from gas stream without effect of high humidity efficiently. 相似文献
10.
In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) modified by the surfactant sodium dodecyl sulfate (SDS) has been successfully synthesized and applied for extraction of trimethoprim (TMP) from environmental water samples based on mixed hemimicelles solid-phase extraction (MHSPE). The coating of alumina on Fe3O4 NPs not only avoids the dissolving of Fe3O4 NPs in acidic solution, but also extends their application without sacrificing their unique magnetization characteristics. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory concentration factor and extraction recoveries can be produced with only 0.1 g Fe3O4/Al2O3 NPs. Main factors affecting the adsolubilization of TMP such as the amount of SDS, pH value, standing time, desorption solvent and maximal extraction volume were optimized. Under the selected conditions, TMP could be quantitatively extracted. The recoveries of TMP by analyzing the four spiked water samples were between 67 and 86%, and the relative standard deviation (RSD) ranged from 2 to 6%. Detection and quantification limits of the proposed method were 0.09 and 0.24 μg L−1, respectively. Concentration factor of 1000 was achieved using this method to extract 500 mL of different environmental water samples. Compared with conventional SPE methods, the advantages of this new Fe3O4/Al2O3 NPs MHSPE method still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of organic compounds from large volume water samples. 相似文献
11.
Hemimicelle capped functionalized carbon nanotubes-based nanosized solid-phase extraction of arsenic from environmental water samples 总被引:1,自引:0,他引:1
The end functionalization of CNTs can introduce oxygen-containing negatively functional groups such as -COOH, -OH, or -CO on their surface site. If cationic surfactant such as cetyltrimethylammonium chloride (CTAC) was added to the functionalized CNTs, then interactions such as hydrophobic and ionic may lead to formation of hemimicelle/admicelle aggregates on the CNTs, a new kind of adsorbents, namely, the hemimicelle capped CMMWCNTs, is obtained. The application of the hemimicelle capped carbon nanotubes-based nanosized solid-phase extraction (SPE) adsorbents in environmental analysis is reported for the first time using arsenic as model target. The effect of adsorption and desorption conditions for arsenic including the amount of surfactant, initial pH of sample solution, the ultrasonic time of sample solution, the amount of electrolyte, flow rate, eluent and its amount were investigated and optimized prior to its determination by atomic fluorescence spectrophotometry (AFS). Arsenic can be quantitatively retained on the hemimicelle capped CMMWCNTs at pH 5-6 from sample volume up to 500 mL and then eluted completely with 2 mol L−1 HNO3 in the presence of 10 mg L−1 CTAC. The method detection limit for arsenic determination with AFS detection was 2 ng L−1, and the relative standard deviation (RSD, n = 11) was 5.3% at the 0.5 μg L−1 level. The recoveries of arsenic in the spiked environmental water samples ranged from 94% to 104.29% with 500 mL of water sample. The proposed method has been applied successfully to the analysis of arsenic in aqueous environmental samples, which demonstrates the hemimicelle capped CMMWCNTs can be an excellent SPE adsorbents for arsenic pretreatment and enrichment from real water samples. 相似文献
12.
Hu ML Jiang M Wang P Mei SR Lin YF Hu XZ Shi Y Lu B Dai K 《Analytical and bioanalytical chemistry》2007,387(3):1007-1016
Molecularly imprinted polymers (MIPs) were prepared by precipitation polymerization using tebuconazole (TBZ) as a template.
Frontal chromatography and selectivity experiments were used to determine the binding capabilities and binding specificities
of different MIPs. The polymer that had the highest binding selectivity and capability was used as the solid-phase extraction
(SPE) sorbent for the direct extraction of TBZ from different biological and environmental samples (cabbage, pannage, shrimp,
orange juice and tap water). The extraction protocol was optimized and the optimum conditions were: conditioning with 5 mL
methanol:acetic acid (9:1), 5 mL methanol and 5 mL water respectively, loading with 5 mL aqueous samples, washing with 1.2 mL
acetonitrile (ACN):phosphate buffer (5:5, pH3), and eluting with 3 mL methanol. The MIPs were able to selectively recognize,
effectively trap and preconcentrate TBZ over a concentration range of 0.5–15 μmol/L. The intraday and interday RSDs were less
than 9.7% and 8.6%, respectively. The limit of quantification was 0.1 μmol/L. Under optimum conditions, the MISPE recoveries
of spiked cabbage, pannage, shrimp, orange juice and tap water were 62.3%, 75.8%, 71.6%, 89% and 93.9%, respectively. MISPE
gave better HPLC separation efficiencies and higher recoveries than C18 SPE and strong cation exchange (SCX) SPE.
Figure HPLC analysis of spiked pannage after MISPE (A) and after C18 SPE (B). HQ (1), E3 (2), p-NP (3), FTF (4), TBZ (5), PNZ (6),
HXZ (7)
Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. 相似文献
13.
14.
A novel approach for assembling homogeneous hyperbranched polymers based on non-covalent interactions with aflatoxins was developed; the polymers were used to evaluate the extraction of aflatoxins B1, B2, G1 and G2 (AFB1, AFB2, AFG1 and AFG2) in simulant solutions. The results showed that the extraction efficiencies of three kinds of synthesized polymers for the investigated analytes were not statistically different; as a consequence, one of the representative polymers (polymer I) was used as the solid-phase extraction (SPE) sorbent to evaluate the influences of various parameters, such as desorption conditions, pH, ionic strength, concentration of methanol in sample solutions, and the mass of the sorbent on the extraction efficiency. In addition, the extraction efficiencies for these aflatoxins were compared between the investigated polymer and the traditional sorbent C18. The results showed that the investigated polymer had superior extraction efficiencies. Subsequently, the proposed polymer for the SPE packing material was employed to enrich and analyze four aflatoxins in the cereal powder samples. The limits of detection (LODs) at a signal-to-noise (S/N) ratio of 3 were in the range of 0.012–0.120 ng g−1 for four aflatoxins, and the limits of quantification (LOQs) calculated at S/N = 10 were from 0.04 to 0.40 ng g−1 for four aflatoxins. The recoveries of four aflatoxins from cereal powder samples were in the range of 82.7–103% with relative standard deviations (RSDs) lower than 10%. The results demonstrate the suitability of the SPE approach for the analysis of trace aflatoxins in cereal powder samples. 相似文献
15.
Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples 总被引:5,自引:0,他引:5
Multi-walled carbon nanotubes (MWCNs) are used as adsorbent for solid-phase extraction (SPE) of several chlorophenols (CPs). CPs were adsorbed on MWCNs cartridge, then desorbed with pH 10.0 methanol, finally determined by HPLC. Under the optimized conditions, detection limits of 0.08-0.8 ng mL(-1) were obtained. The method had been applied to analyze the five CPs in tap water and river water. 相似文献
16.
Yuanji Gao Bing Xia Jie Liu Baocheng JiFengwei Ma Lisheng DingBangjing Li Yan Zhou 《Analytica chimica acta》2015
In this study, 4-[4-phenylazo-phenoxy] butyl-1-thiol (AzSH) functionalized nanodendritic silver (AzS@AgNDs) materials were prepared as a solid-phase extraction (SPE) sorbent for the selective extraction of estrogens. AzS@AgNDs possess an extremely large surface-to-volume ratio and a small average particle size. The performance of the material was evaluated by selective enrichment of hexestrol, diethylstilbestrol, dienestrol and bisphenol A in water and milk samples followed by rapid ultra-performance liquid chromatography–electrospray ionization mass spectrometry (UPLC–ESI–MS) analyses. The results exhibited that AzS@AgNDs had excellent adsorption capability for the targeted estrogens. The limits of detection of the four estrogens ranged from 0.1 to 5.0 pg/mL. The recoveries of the estrogens spiked into tap water were over the range of 83.6–105.3% with relative standard deviations of 2.8–6.0%. The results indicated the capability of this method for the rapid determination of estrogens in milk and other environmental water samples. In addition, this method would be useful for the determination of human exposure and health risk assessments trace level of endocrine-disrupting compounds (EDCs) in drinking water. 相似文献
17.
A new method for the selective cleanup of complex matrices and simultaneous separation of benzo[a]pyrene (BaP) was developed in this study. This method was based on solid-phase extraction (SPE) using magnesium oxide microspheres as sorbents, and it eliminated interferences from various impurities, such as lipids, sulphur, pigments, halobenzenes, polychlorodibenzo-p-dioxins and polychlorodibenzofurans. Several parameters, including the volume of rinsing and eluting solvents, the type of loading solvents and SPE sorbents, were optimized systematically. The capability for impurity removal was verified by gel permeation chromatography, gas chromatography, and liquid chromatography. Compared to commercial sorbents (silica gel, florisil and alumina), MgO microspheres exhibited excellent performance in the selective isolation of BaP and removal of impurities. The proposed method was applied to detect BaP in complex samples (sediments, soils, fish, and porcine liver). The limit of quantification (LOQ) was 1.04 ngL(-1), and the resulting regression coefficient (r(2)) was greater than 0.999 over a broad concentration range (9.5-7600 ngL(-1)). In contrast to traditional methods, the proposed method can give rise to higher recovery (85.1-100.8%) and better selectivity with simpler operation and less consumption of organic solvents (20-40 mL). 相似文献
18.
A new molecularly imprinted polymer for selective extraction of cotinine from urine samples by solid-phase extraction 总被引:1,自引:0,他引:1
Cotinine, the main metabolite of nicotine in human body, is widely used as a biomarker for assessment of direct or passive
exposure to tobacco smoke. A method for molecularly imprinted solid-phase extraction (MISPE) of cotinine from human urine
has been investigated. The molecularly imprinted polymer (MIP) with good selectivity and affinity for cotinine was synthesized
using cotinine as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as
the cross-linker. The imprinted polymer was evaluated for use as a SPE sorbent, in tests with aqueous standards, by comparing
recovery data obtained using the imprinted form of the polymer and a non-imprinted form (NIP). Extraction from the aqueous
solutions resulted in more than 80% recovery. A range of linearity for cotinine between 0.05 and 5 μg mL−1 was obtained by loading 1 mL blank urine samples spiked with cotinine at different concentrations in acetate buffer of pH
9.0, and by using double basic washing and acidic elution. The intra-day coefficient of variation (CV) was below 7% and inter-day
CV was below 10%. This investigation has provided a reliable MISPE–HPLC method for determination of cotinine in human urine
from both active smokers and passive smokers.
Figure 相似文献
19.
Guozhen Fang Jing ChenJunping Wang Jinxing HeShuo Wang 《Journal of chromatography. A》2010,1217(10):1567-1574
A novel material for solid-phase extraction (SPE) was synthesized by chemical immobilization of a functionalized N-methylimidazolium ionic liquid on silica gel. Cartridges packed with the synthetic material were successfully applied to the pre-concentration of trace-level thifensulfuron-methyl, metsulfuron-methyl, chlorsulfuron, sulfometuron-methyl, rimsulfuron, ethametsulfuron, tribenuron-methyl, bensulfuron-methyl, prosulfuron, pyrazosulfuron, chlorimuron-ethyl and primisulfuron from environmental water and soil samples. The 12 sulfonylurea herbicides (SUs) obtained a good resolution in less than 50 min using HPLC with a UV detector. The recovery studies using the ionic liquid-functionalized silica as a sorbent were performed by three consecutive extractions of water and soil samples at two spiked levels. The average recovery for each analyte was in the range of 53.8–118.2% for the water samples and 60.9–121.3% for the soil sample, with RSDs lower than 11.3% in all cases. The ionic liquid-functionalized silica cartridges showed higher selectivity for the SUs than commercially available C18 cartridges did. 相似文献
20.
The eggshell membrane (ESM) contains several surface functional groups such as amines, amides and carboxylic groups with potential as SPE adsorbent for the retention of target species of interest. In this paper, the potential use of ESM, a typical biomaterial, as solid-phase extraction (SPE) adsorbent is evaluated for analysis of trace arsenic(V) in environmental water samples in combination with hydride generation atomic fluorescence spectrometry (HG-AFS). In order to obtain the satisfactory recovery of arsenic(V), various parameters including the desorption and enrichment conditions such as pH, the flow rate and the volume of sample solution, the amount of ESM and the content of sodium chloride were systematically optimized and the effects of co-existed ions were also investigated in detail. Under the optimal conditions, arsenic(V) could be easily extracted by the ESM packed cartridge and the breakthrough adsorption capacity was found to be 3.9 μg g−1. The favorable limit of detection (LOD) for arsenic(V) was found to be 0.001 μg L−1 with an enrichment factor of 33.3, and the relative standard deviations (R.S.Ds) was 2.1% for 0.6 μg L−1 arsenic (n = 11). The reproducibility among columns was satisfactory (R.S.D. among columns is less than 5%). The proposed method has been successfully applied to analysis of arsenic(V) in aqueous environmental samples, which suggests the ESM can be an excellent SPE adsorbent for arsenic(V) pretreatment and enrichment from real water samples. 相似文献