首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for simultaneous determination of sterols and fatty alcohols in olive leaves and drupes based on ultrasound-assisted extraction and derivatization prior to individual identification–quantitation by chromatographic separation and mass spectrometry detection (single ion monitoring mode) is reported here. The sample preparation procedure involves the following steps: (i) leaching of the raw material accelerated by ultrasound; (ii) saponification of the leachate, also accelerated by ultrasound, and separation of the unsaponifiable matter; (iii) cleaning of the extract by solid-phase extraction; (iv) silylation of the target analytes—also assisted by ultrasound; (v) injection into the gas chromatograph for identification–simultaneous quantitation of the two families of compounds. Individual separation–determination of the fatty alcohols and sterols provide limits of detection (LOD) in the range 9.8 × 10−2 to 2 μg/l and 5.0–6.0 μg/l, respectively. The LOQs range from 0.3 to 0.9 μg/l and 17.0 to 21.0 μg/l, and the linear dynamic ranges are between LOQ and 25.0 μg/ml. The between-day precision, expressed as relative standard deviation (RSD), ranges between 3.6 and 6.1% and the within-laboratory reproducibility, also expressed as RSD, between 6.4 and 9.2%. Within the study of the metabolomic profile of the unsaponifiable fraction in olive tree, the method has been applied to the determination of the target analytes in different varieties of olive trees cultivated in the same zone, so that differences in this unsaponifiable fraction can be attributed to characteristics of the target varieties. As compared with its European Union counterpart, the method is endowed with similar analytical characteristics and drastic shortening of the operational time.  相似文献   

2.
Summary Cleaning of samples is often the first step in the entire procedure of sample preparation in environmental trace element research. The question must generally be raised of whether cleaning is meaningful before chemical investigations with plant material (e.g. for the determination of transfer factors in the soil/plant system) or not (e.g. for food chain analysis in the plant/animal system). The most varied cleaning procedures for plant samples are currently available ranging from dry and wet wiping of the leaf or needle surface up to the complete removal of the cuticule with the aid of chloroform. There is at present no standardized cleaning procedure for plant samples so that it is frequently not possible to compare analytical data from different working groups studying the same plant species.Modified paper presented at the IAEA training course on Sampling, sample preparation and data evaluation for multielement and radionuclide analysis by nuclear and instrumental methods from November 6th to December 1st 1989 at the Research Centre in Jülich, FRG  相似文献   

3.
This review intends to show analytical chemists a very little known application of ultrasound for sample preparation: that dealing with liquid samples. The influence of this type of energy on the development of chemical reactions (e.g. depolymerization, redox, esterification, alkylation, addition, ethylation of organometallic compounds, complex formation) and that on heterogeneous liquid-liquid processes (e.g. liquid-liquid extraction, homogenization, emulsification, liposome formation) deserves to be taken into consideration in the analytical laboratory in order to take profit from its versatile effects to improve, accelerate or make possible a given process.  相似文献   

4.
A wide number of analytical terms have been applied erroneously for many years by analytical chemists, and they apply at present yet, by considering the time makes their use correct. The question is, may precedents validate the present use of incorrect scientific terms? Misused terms are found along the analytical process, starting with giving the name of the sample to the exiguous fraction of the original sample that reaches the detector or the high-resolution equipment after sample pretreatment and sample preparation. All the steps of the analytical process are considered in this article, with special emphasis on sample preparation and, within this, on the use of ultrasound, mainly for assisting extraction more unequivocally named as leaching or lixiviation. A call of attention in this respect is considered by the author to be of help to the analytical community.  相似文献   

5.
Domestic and international regulatory limits have been established for aflatoxin in almonds and other tree nuts. It is difficult to obtain an accurate and precise estimate of the true aflatoxin concentration in a bulk lot because of the uncertainty associated with the sampling, sample preparation, and analytical steps of the aflatoxin test procedure. To evaluate the performance of aflatoxin sampling plans, the uncertainty associated with sampling lots of shelled almonds for aflatoxin was investigated. Twenty lots of shelled almonds were sampled for aflatoxin contamination. The total variance associated with measuring B1 and total aflatoxins in bulk almond lots was estimated and partitioned into sampling, sample preparation, and analytical variance components. All variances were found to increase with an increase in aflatoxin concentration (both B1 and total). By using regression analysis, mathematical expressions were developed to predict the relationship between each variance component (total, sampling, sample preparation, and analysis variances) and aflatoxin concentration. Variance estimates were the same for B1 and total aflatoxins. The mathematical relationships can be used to estimate each variance for a given sample size, subsample size, and number of analyses other than that measured in the study. When a lot with total aflatoxins at 15 ng/g was tested by using a 10 kg sample, a vertical cutter mixer type of mill, a 100 g subsample, and high-performance liquid chromatography analysis, the sampling, sample preparation, analytical, and total variances (coefficient of variation, CV) were 394.7 (CV, 132.4%), 14.7 (CV, 25.5%), 0.8 (CV, 6.1%), and 410.2 (CV, 135.0%), respectively. The percentages of the total variance associated with sampling, sample preparation, and analytical steps were 96.2, 3.6, and 0.2, respectively.  相似文献   

6.
Determination of trace concentrations of sulfur components in natural gas is a true analytical challenge. Only analytical procedures based on gas chromatography can meet the sensitivity and accuracy requirements dictated by environmental regulation institutions and modern chemical industry. In the present contribution the sample pretreatment and chromatographic separation steps have been evaluated and optimized based on the use of a flamebased sulfur chemiluminescence detector (SCD) for target compound detection. The proposed instrument consists of a programmed temperature vaporizing (PTV) injector employing a liner packed with Chromosorb 104, a 4 μm thick film apolar column and a flame-based SCD. Using a 13 mL sample loop the detection limit achievable with the new method is 3 μg S/m3. The precision of replicate measure. ments is generally in the range of 5–15% relative standard deviation. Lower detection limits can be achieved by preconcentrating larger sample volumes, e.g. 100 mL.  相似文献   

7.
《Analytical letters》2012,45(3):647-668
Abstract

An automated system to grind geologic samples has been successfully tested. A Zymate II robotic system, along with specially designed or modified hardware, was used to process partially pulverized geologic samples. the system is capable of processing samples on a 24-hour basis with an average per-samples grinding time of 12.4 minutes. A sample grinding period is followed by a cleanout sequence of air purges, vacuuming and grinding for surface cleaning with quartz sand. Routine operator involvement is limited to adjusting the grinding plates on the Bico vertical grinder at the beginning of each preparation interval. Studies conducted using variable amounts of cleaning sand between grinding of samples indicate that the adjustment interval can be extended to 50 samples (25g cleaning sand) using an acceptance criteria of 80% of sample passing 80 mesh. the processed samples are suitable for direct geochemical analysis using a variety of standard chemical digestions. Cross contamination studies using soil, chromite, and galena/sphalerite samples have revealed that the grinding system is capable of clean-out efficiencies exceeding 99% using as little as 25g of cleaning sand.  相似文献   

8.
A continuous shipboard sampling system was developed for the determination of the isotopic composition of the triple oxygen isotopes and oxygen to argon (O(2)/Ar) ratios in dissolved air. In this system, dissolved air is separated by a hollow fiber membrane degassing module. This system collects dissolved air quantitatively and rapidly. The sample flow rate through the membrane is critical for the fractionation of the oxygen isotopes and the O(2)/Ar ratio and should be < 2 mL/min. Fractionation of oxygen between the liquid and gas phase of the air-saturated water was found to be similar to that of earlier reports. The advantages of this method over existing techniques include rapid collection of samples (30 min/sample), high efficiency in extraction of gases from the liquid phase, and the lack of a sample preparation step (e.g. degassing).  相似文献   

9.
Abstract

Analytical laboratories are looking for the “Total Solution” today. Ideally, the “Total Solution” is the automation of all steps after receiving a sample for analysis including generation of the final report. While that goal is not yet fully realized, efforts to attain it are well underway. Robotic sample preparation systems have rapidly evolved to become common tools in many analytical laboratories which use them along with standard analytical instruments such as chromatographs and spectrophotometers. Physically coupling the two types of systems can offer advantages – the full extent of which depends upon the degree of sophistication in the communication between them. The goal of a “Total Solution” demands real-time decision-making capability based on the information associated with each sample. This information includes everything from its origin to just-completed chromatographic results as the sample travels through the lab. Hence, the level of information exchange between preparation and analysis systems will determine how fully the potential power of such a coupling is utilized.  相似文献   

10.
Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003–2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed.  相似文献   

11.
Whereas the characterization of nanomaterials using different analytical techniques is often highly automated and standardized, the sample preparation that precedes it causes a bottleneck in nanomaterial analysis as it is performed manually. Usually, this pretreatment depends on the skills and experience of the analysts. Furthermore, adequate reporting of the sample preparation is often missing. In this overview, some solutions for techniques widely used in nano-analytics to overcome this problem are discussed. Two examples of sample preparation optimization by automation are presented, which demonstrate that this approach is leading to increased analytical confidence. Our first example is motivated by the need to exclude human bias and focuses on the development of automation in sample introduction. To this end, a robotic system has been developed, which can prepare stable and homogeneous nanomaterial suspensions amenable to a variety of well-established analytical methods, such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), field-flow fractionation (FFF) or single-particle inductively coupled mass spectrometry (sp-ICP-MS). Our second example addresses biological samples, such as cells exposed to nanomaterials, which are still challenging for reliable analysis. An air–liquid interface has been developed for the exposure of biological samples to nanomaterial-containing aerosols. The system exposes transmission electron microscopy (TEM) grids under reproducible conditions, whilst also allowing characterization of aerosol composition with mass spectrometry. Such an approach enables correlative measurements combining biological with physicochemical analysis. These case studies demonstrate that standardization and automation of sample preparation setups, combined with appropriate measurement processes and data reduction are crucial steps towards more reliable and reproducible data.  相似文献   

12.
《Electrophoresis》2018,39(19):2425-2430
Determination of natural preservatives using electrophoretic or chromatographic techniques in fermented milk products is a complex task due to the following reasons: (i) the concentrations of the analytes can be below the detection limits, (ii) complex matrix and comigrating/coeluting compounds in the sample can interfere with the analytes of the interest, (iii) low recovery of the analytes, and (iv) the necessity of complex sample preparation. The aim of this study was to apply capillary zone electrophoresis coupled with contactless conductivity detection for the separation and determination of nisin in fermented milk products. In this work, separation and determination of natural preservative–nisin in fermented milk products is described. Optimized conditions using capillary zone electrophoresis coupled with capacitance‐to‐digital technology based contactless conductivity detector and data conditioning, which filter the noise of the electropherogram adaptively to the peak migration time, allowed precise, accurate, sensitive (limit of quantification: 0.02 μg/mL), and most importantly requiring very minute sample preparation, determination of nisin. Sample preparation includes following steps: (i) extraction/dilution and (ii) centrifugation. This method was applied for the determination of nisin in real samples, i.e. fermented milk products. The values of different nisin forms were ranging from 0.056 ± 0.003 μg/mL to 9.307 ± 0.437 μg/g.  相似文献   

13.
14.
超声促进浸渍法制备催化剂LaCoO3/γ-Al2O3   总被引:3,自引:0,他引:3  
使用超声波促进浸渍法制备了负载纳米钙钛矿型催化剂LaCoO3/γ-Al2O3,考察了超声波辐照对催化剂性质的影响.实验结果表明,在浸渍过程施加超声波辐照可以显著缩短浸渍时间、增加活性组分的负载量和孔内含量、提高活性组分的分散度,使催化剂对NO分解反应的催化活性增加.  相似文献   

15.
Proteomics studies aiming at a detailed analysis of proteins, and peptidomics, aiming at the analysis of the low molecular weight proteome (peptidome) offer a promising approach to discover novel biomarkers valuable for different crucial steps in detection, prevention and treatment of disease. Much emphasis has been given to the analysis of blood, since this source would by far offer the largest number of meaningful biomarker applications. Blood is a complex liquid tissue that comprises cells and extra-cellular fluid. The choice of suitable specimen collection is crucial to minimize artificial occurring processes during specimen collection and preparation (e.g. cell lysis, proteolysis). After specimen collection, sample preparation for peptidomics is carried out by physical methods (filtration, gel-chromatography, precipitation) which allow for separation based on molecular size, with and without immunodepletion of major abundant proteins. Differential Peptide Display (DPD) is an offline-coupled combination of Reversed-Phase-HPLC and MALDI mass spectrometry in combination with in-house developed data display and analysis tools. Identifications of peptides are carried out by additional mass spectrometric methods (e.g. online LC-ESI-MS/MS). In the work presented here, insights into semi-quantitative mass spectrometric profiling of plasma peptides by DPD are given. This includes proper specimen selection (plasma vs. serum), sample preparation, especially peptide extraction, the determination of sensitivity (i.e. by establishing detection limits of exogenously spiked peptides), the reproducibility for individual as well as for all peptides (Coefficient of Variation calculations) and quantification (correlation between signal intensity and concentration). Finally, the implications for clinical peptidomics are discussed.  相似文献   

16.
《Electrophoresis》2017,38(3-4):460-468
Ultrasound‐assisted extraction (UAE), cloud point extraction (CPE), and ultrasound back‐extraction (UABE) techniques have been coupled for lixiviation, preconcentration, and cleanup of polybrominated diphenyl ethers (PBDEs) from milk samples for determination by gas chromatography‐electron capture detection (GC‐ECD). Physicochemical parameters that affect the efficiency of the extraction system were investigated using a design of experiments based on multivariate statistical tools, and considering the sample matrix along the development. The coupling of the leaching step, UAE, enhanced ca. 3.5 times the extraction efficiency of the former sample preparation methodology (CPE‐UABE) leading to cleaner sample extracts suitable for GC analysis. Under optimum conditions, the proposed methodology exhibits successful performance in terms of linearity and precision, with recoveries in the range of 68–70% and LODs within the range 0.05–0.5 ng/g dry weight (d.w.). The proposed sample preparation methodology coupled three green analytical techniques. It expands the application frontiers of CPE for the analysis of biological samples by GC. The optimized methodology was used for determination of PBDEs in powder milk samples, from both commercial and human sources.  相似文献   

17.
The variability associated with the aflatoxin test procedure used to estimate aflatoxin levels in bulk shipments of hazelnuts was investigated. Sixteen 10 kg samples of shelled hazelnuts were taken from each of 20 lots that were suspected of aflatoxin contamination. The total variance associated with testing shelled hazelnuts was estimated and partitioned into sampling, sample preparation, and analytical variance components. Each variance component increased as aflatoxin concentration (either B1 or total) increased. With the use of regression analysis, mathematical expressions were developed to model the relationship between aflatoxin concentration and the total, sampling, sample preparation, and analytical variances. The expressions for these relationships were used to estimate the variance for any sample size, subsample size, and number of analyses for a specific aflatoxin concentration. The sampling, sample preparation, and analytical variances associated with estimating aflatoxin in a hazelnut lot at a total aflatoxin level of 10 ng/g and using a 10 kg sample, a 50 g subsample, dry comminution with a Robot Coupe mill, and a high-performance liquid chromatographic analytical method are 174.40, 0.74, and 0.27, respectively. The sampling, sample preparation, and analytical steps of the aflatoxin test procedure accounted for 99.4, 0.4, and 0.2% of the total variability, respectively.  相似文献   

18.
Speciation analysis is nowadays performed routinely in many laboratories to control the quality of the environment, food and health. Chemical speciation analyses generally include the study of different oxidation state of elements or individual organometallic compounds. The determination of the different chemical forms of elements is still an analytical challenge, since they are often unstable and concentrations in different matrices of interest are in the microg l(-1) or even in the ng l(-1) range (e.g., estuarine waters) or ng g(-1) in sediments and biological tissues. For this reason, sensitive and selective analytical atomic techniques are being used as available detectors for speciation, generally coupled with chromatography for the time-resolved introduction of analytes into the atomic spectrometer. The complexity of these instrumental couplings has a straightforward consequence on the duration of the analysis, but sample preparation to separate and transfer the chemical species present in the sample into a solution to be accepted readily by a chromatographic column is the more critical step of total analysis, and demands considerable operator skills and time cost. Traditionally, liquid-liquid extraction has been employed for sample treatment with serious disadvantages, such as consumption, disposal and long-term exposure to organic solvent. In addition, they are usually cumbersome and time-consuming. Therefore, the introduction of new reagents such as sodium tetraethylborate for the simultaneous derivatization of several elements has been proposed. Other possibilities are based in the implementation of techniques for efficient and accelerated isolation of species from the sample matrix. This is the case for microwave-assisted extraction, solid-phase extraction and microextraction, supercritical fluid extraction or pressurized liquid extraction, which offer new possibilities in species treatment, and the advantages of a drastic reduction of the extraction time and the embodiment into on-line flow analysis systems. This new generation of treatment techniques constitutes a good choice as fast extraction methods for feasible species-selective analysis of organometallic compounds under the picogram level, that can be used for national regulatory agencies, governmental and industrial quality control laboratories, and consequently, for manufacturers of analytical instrumentation.  相似文献   

19.
A demanding task in pesticide residue analysis is yet the development of multi-residue methods for the determination of pesticides in vegetables with relatively high fat content (i.e. edible oils and fatty vegetables). The separation of pesticides and other chemical contaminants from high-fat food samples prior to subsequent steps in the analytical process is yet a challenging issue to which much effort in method development has being applied. This review addresses the main sample treatment methodologies for pesticide residue analysis in fatty vegetable matrices. Even with the advent of advanced hyphenated techniques based on mass spectrometry these complex fatty matrices usually require extensive sample extraction and purification. Current methods involve the use of one or the combination of some of the following techniques for both the sample extraction and clean-up steps: liquid-liquid partitioning, solid-phase extraction (SPE), gel-permeation chromatography (GPC), matrix solid-phase dispersion (MSPD), etc. An overview of methods developed for these contaminants in fatty vegetables matrices is presented. Sample extraction and purification techniques are discussed and their most recent applications are highlighted. This review emphasizes that sample preparation is a critical step, but also the determination method is, and cannot be treated separately from sample treatment. In recent years, the appearance and use of new, more polar pesticides has fostered the development of liquid chromatography/mass spectrometry (LC-MS) besides gas chromatography. The main features of LC-MS for the analysis of multi-class pesticides in fatty vegetable samples will be also underlined, with an emphasis on the multi-class, multi-residue strategy and the difficulties associated.  相似文献   

20.
Sample preparation and introduction techniques are very critical steps in gas chromatography analysis and particularly in the analysis of volatiles in solid samples. In these cases, they can be divided into two main categories: direct and indirect approaches, based on how the solid sample is treated, i.e. with and without dissolution (or extraction) of analytes from the solid sample. To enable routine application, coupling with sample preparation techniques (especially solid or solvent‐based microextractions) is needed to achieve automation. Here, an overview of the most common sample introduction techniques for gas chromatography with their advantages and drawbacks is presented and discussed, including references to relevant examples. So, this review can serve as guidance for new users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号