首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Methicillin-resistant Staphylococcus aureus (MRSA) has become a major threat on public health because of the increase of clinically isolated strains that exhibi...  相似文献   

2.
Antimicrobial bioassay-guided fractionation of the endophytic fungi Neofusicoccum australe led to the isolation of a new unsymmetrical naphthoquinone dimer, neofusnaphthoquinone B (1), along with four known natural products (2–5). Structure elucidation was conducted by nuclear magnetic resonance (NMR) spectroscopic methods, and the antimicrobial activity of all the natural products was investigated, revealing 1 to be moderately active towards methicillin-resistant Staphylococcus aureus (MRSA) with a minimum inhibitory concentration (MIC) of 16 µg/mL.  相似文献   

3.
The increase in the number of bacteria that are resistant to multiple antibiotics poses a serious clinical problem that threatens the health of humans worldwide. Nadifloxacin (1) is a highly potent antibacterial agent with broad-spectrum activity. However, its poor aqueous solubility has limited its use to topical applications. To increase its solubility, it was glycosylated herein to form a range of trans-linked (3a-e) and cis-linked (7a,b) glycosides, each of which was prepared and purified to afford single anomers. The seven glycoside derivatives (3a-e, 7a,b) were examined for potency against eight strains of S. aureus, four of which were methicillin-resistant. Although less potent than free nadifloxacin (1), the α-L-arabinofuransoside (3a) was effective against all strains that were tested (minimum inhibitory concentrations of 1–8 μg/mL compared to 0.1–0.25 μg/mL for nadifloxacin), demonstrating the potential of this glycoside as an antibacterial agent. Estimation of Log P as well as observations made during preparation of these compounds reveal that the solubilities of the glycosides were greatly improved compared with nadifloxacin (1), raising the prospect of its use in oral applications.  相似文献   

4.
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and responsible for causing life-threatening infections. The emergence of hypervirulent and multidrug-resistant (MDR) S. aureus strains led to challenging issues in antibiotic therapy. Consequently, the morbidity and mortality rates caused by S. aureus infections have a substantial impact on health concerns. The current worldwide prevalence of MRSA infections highlights the need for long-lasting preventive measures and strategies. Unfortunately, effective measures are limited. In this study, we focus on the identification of vaccine candidates and drug target proteins against the 16 strains of MRSA using reverse vaccinology and subtractive genomics approaches. Using the reverse vaccinology approach, 4 putative antigenic proteins were identified; among these, PrsA and EssA proteins were found to be more promising vaccine candidates. We applied a molecular docking approach of selected 8 drug target proteins with the drug-like molecules, revealing that the ZINC4235426 as potential drug molecule with favorable interactions with the target active site residues of 5 drug target proteins viz., biotin protein ligase, HPr kinase/phosphorylase, thymidylate kinase, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-L-lysine ligase, and pantothenate synthetase. Thus, the identified proteins can be used for further rational drug or vaccine design to identify novel therapeutic agents for the treatment of multidrug-resistant staphylococcal infection.  相似文献   

5.
Quorum-sensing (QS) is a regulatory mechanism in bacterial communication, important for pathogenesis control. The search for small molecules active as quorum-sensing inhibitors (QSI) that can synergize with antibiotics is considered a good strategy to counteract the problem of antibiotic resistance. Here the antimicrobial labdane diterpenoids sclareol (1) and manool (2) extracted from Salvia tingitana were considered as potential QSI against methicillin-resistant Staphylococcus aureus. Only sclareol showed synergistic activity with clindamycin. The quantification of these compounds by LC–MS analysis in the organs and in the calli of S. tingitana showed that sclareol is most abundant in the flower spikes and is produced by calli, while manool is the major labdane of the roots, and is abundant also in the leaves. Other metabolites of the roots were abietane diterpenoids, common in Salvia species, and pentacyclic triterpenoids, bearing a γ-lactone moiety, previously undescribed in Salvia. Docking simulations suggested that 1 and 2 bind to key residues, involved in direct interactions with DNA. They may prevent accessory gene regulator A (AgrA) binding to DNA or AgrA activation upon phosphorylation, to suppress virulence factor expression. The antimicrobial activity of these two compounds probably achieves preventing upregulation of the accessory gene regulator (agr)-regulated genes.  相似文献   

6.
The novel pleuromutilin derivative, which showed excellent in vitro antibacterial activity against MRSA, 22-(2-(2-(4-((4-(4-nitrophenyl)piperazin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)acetamido)phenyl)thioacety-l-yl-22-deoxypleuromutilin (Z33), was synthesized and characterized in our previous work. In this study, the preliminary pharmacodynamics and safety of Z33 were further evaluated. In in vitro antibacterial activity assays, Z33 was found to be a potent bactericidal antibiotic against MRSA that induced dose-dependent growth inhibition and long-term post-antibiotic effect (PAE). The drug-resistance test demonstrated that Z33 possessed a narrow mutant selection window and lower propensities to select resistance than that of tiamulin. Cytochrome P450 (CYP450) inhibition assay determined that the inhibitory effect of Z33 was similar to that of tiamulin against the activity of CYP3A4, and was lower than that of tiamulin on the activity of CYP2E1. Toxicity determination showed that both Z33 and tiamulin displayed low cytotoxicity of RAW264.7 cells. Furthermore, Z33 was found to be a high-security compound with a 50% lethal dose (LD50) above 5000 mg/kg in the acute oral toxicity test in mice. In an in vivo antibacterial activity test, Z33 displayed better therapeutic effectiveness than tiamulin in the neutropenic mouse thigh infection model. In summary, Z33 was worthy of further development as a highly effective and safe antibiotic agent against MRSA infection.  相似文献   

7.
Staphylococcus aureus (S. aureus) is a major human pathogen that requires new antibiotics with unique mechanism. A new pleuromutilin derivative, 14-O-[(4,6-Diamino-pyrimidine-2-yl) thioacetyl] mutilin (DPTM), has been synthesized and proved as a potent antibacterial agent using in vitro and in vivo assays. In the present study, DPTM was further in vitro evaluated against methicillin-resistant Staphylococcus aureus (MRSA) isolated from dairy farms and outperformed tiamulin fumarate, a pleuromutilin drug used for veterinary. Moreover, a murine skin wound model caused by MRSA infection was established, and the healing effect of DPTM was investigated. The results showed that DPTM could promote the healing of MRSA skin infection, reduce the bacterial burden of infected skin MRSA and decrease the secretion of IL-6 and TNF-α inflammatory cytokines in plasma. These results provided the basis for further in-depth drug targeted studies of DPTM as a novel antibacterial agent.  相似文献   

8.
The antibacterial activity of propolis has long been of great interest, and the chemical composition of propolis is directly dependent on its source. We recently obtained a type of propolis from China with a red color. Firstly, the antibacterial properties of this unusual propolis were determined against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). Studies on its composition identified and quantified 14 main polyphenols of Chinese red propolis extracts (RPE); quantification was carried out using liquid chromatography triple quadrupole tandem mass spectrometry (LC-QQQ-MS/MS) and RPE was found to be rich in pinobanksin, pinobanksin-3-acetate, and chrysin. In vitro investigations of its antibacterial activity revealed that its activity against S. aureus and MRSA is due to disruption of the cell wall and cell membrane, which then inhibits bacterial growth. Despite its similar antibacterial activities against S. aureus and MRSA, metabolomic analysis further revealed the effects of RPE on bacteria metabolism were different. The untargeted metabolomic results showed that a total of 7 metabolites in 12 metabolic pathways had significant changes (Fold change > 2, p < 0.05 *) after RPE treatment in S. aureus, while 11 metabolites in 9 metabolic pathways had significant changes (Fold change > 2, p < 0.05 *) after RPE treated on MRSA. Furthermore, RPE downregulated several specific genes related to bacterial biofilm formation, autolysis, cell wall synthesis, and bacterial virulence in MRSA. In conclusion, the data obtained indicate that RPE may be a promising therapeutic agent against S. aureus and MRSA.  相似文献   

9.
With the abuse of antibiotics, bacterial antibiotic resistance is becoming a major public healthcare issue. Natural plants, especially traditional Chinese herbal medicines, which have antibacterial activity, are important sources for discovering potential bacteriostatic agents. This study aimed to develop a fast and reliable method for screening out antimicrobial compounds targeting the MRSA membrane from Psoralea corylifolia Linn. seed. A UPLC-MS/MS method was applied to identify the prenylated flavonoids in major fractions from the extracts of Psoralea corylifolia Linn. seed. The broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of different fractions and compounds. The morphological and ultrastructural changes of MRSA were determined by scanning electron microscopy (SEM). The membrane-targeting mechanism of the active ingredients was explored by membrane integrity assays, membrane fluidity assays, membrane potential assays, ATP, and ROS determination. We identified eight prenylated flavonoids in Psoralea corylifolia Linn. seed. The antibacterial activity and mechanism studies showed that this type of compound has a unique destructive effect on MRSA cell membranes and does not result in drug resistance. The results revealed that prenylated flavonoids in Psoralea corylifolia Linn. seeds are promising candidates for the development of novel antibiotic agents to combat MRSA-associated infections.  相似文献   

10.
Several natural products (NPs) have displayed varying in vitro activities against methicillin-resistant Staphylococcus aureus (MRSA). However, few of these compounds have not been developed into potential antimicrobial drug candidates. This may be due to the high cost and tedious and time-consuming process of conducting the necessary preclinical tests on these compounds. In this study, cheminformatic profiling was performed on 111 anti-MRSA NPs (AMNPs), using a few orally administered conventional drugs for MRSA (CDs) as reference, to identify compounds with prospects to become drug candidates. This was followed by prioritizing these hits and identifying the liabilities among the AMNPs for possible optimization. Cheminformatic profiling revealed that most of the AMNPs were within the required drug-like region of the investigated properties. For example, more than 76% of the AMNPs showed compliance with the Lipinski, Veber, and Egan predictive rules for oral absorption and permeability. About 34% of the AMNPs showed the prospect to penetrate the blood–brain barrier (BBB), an advantage over the CDs, which are generally non-permeant of BBB. The analysis of toxicity revealed that 59% of the AMNPs might have negligible or no toxicity risks. Structure–activity relationship (SAR) analysis revealed chemical groups that may be determinants of the reported bioactivity of the compounds. A hit prioritization strategy using a novel “desirability scoring function” was able to identify AMNPs with the desired drug-likeness. Hit optimization strategies implemented on AMNPs with poor desirability scores led to the design of two compounds with improved desirability scores.  相似文献   

11.
We aimed to evaluate the inhibitory effect and mechanism of plantaricin YKX on S. aureus. The mode of action of plantaricin YKX against the cells of S. aureus indicated that plantaricin YKX was able to cause the leakage of cellular content and damage the structure of the cell membranes. Additionally, plantaricin YKX was also able to inhibit the formation of S. aureus biofilms. As the concentration of plantaricin YKX reached 3/4 MIC, the percentage of biofilm formation inhibition was over 50%. Fluorescent dye labeling combined with fluorescence microscopy confirmed the results. Finally, the effect of plantaricin YKX on the AI-2/LuxS QS system was investigated. Molecular docking predicted that the binding energy of AI-2 and plantaricin YKX was −4.7 kcal/mol and the binding energy of bacteriocin and luxS protein was −183.701 kcal/mol. The expression of the luxS gene increased significantly after being cocultured with plantaricin YKX, suggesting that plantaricin YKX can affect the QS system of S. aureus.  相似文献   

12.
13.
Natural clays have recently been proven to possess antibacterial properties. Effective natural antimicrobial agents are needed to combat bacterial contamination on food contact surfaces, which are increasingly more prevalent in the food chain. This study sought to determine the antibacterial activity of clays against the food-borne pathogens Salmonella typhimurium ATCC 14028 and Staphylococcus aureus ATCC 13565. Soils were processed to yield leachates and suspensions from untreated and treated clays. Soil particle size, pH, cation-exchange capacity, metal composition and mineralogy were characterized. Antibacterial screening was performed on six Malaysian soils via the disc diffusion method. In addition, a time-kill assay was conducted on selected antibacterial clays after 6 h of exposure. The screening revealed that Munchong and Carey clays significantly inhibit Salmonella typhimurium (11.00 ± 0.71 mm) and S. aureus (7.63 ± 0.48 mm), respectively. Treated Carey clay leachate and suspension completely kill Salmonella typhimurium, while S. aureus viability is reduced (2 to 3 log10). The untreated Carey and all Munchong clays proved ineffective as antibacterials. XRD analysis confirmed the presence of pyrite and magnetite. Treated Carey clays had a higher soluble metal content compared to Munchong; namely Al (92.63 ± 2.18 mg/L), Fe (65.69 ± 3.09 mg/L) and Mg (88.48 ± 2.29 mg/L). Our results suggest that metal ion toxicity is responsible for the antibacterial activity of these clays.  相似文献   

14.
Methicillin-resistant Staphylococcus aureus (MRSA) can induce multiple inflammations. The biofilm formed by MRSA is resistant to a variety of antibiotics and is extremely difficult to cure, which seriously threatens human health. Herein, a nanoparticle encapsulating berberine with polypyrrole core and pH-sensitive shell to provide chemo-photothermal dual therapy for MRSA infection is reported. By integrating photothermal agent polypyrrole, berberine, acid-degradable crosslinker, and acid-induced charge reversal polymer, the nanoparticle exhibited highly efficient MRSA infection treatment. In normal uninfected areas and bloodstream, nanoparticles showed negatively charged, demonstrating high biocompatibility and excellent hemocompatibility. However, once arriving at the MRSA infection site, the nanoparticle can penetrate and accumulate in the biofilm within 2 h. Simultaneously, berberine can be released into biofilm rapidly. Under the combined effect of photothermal response and berberine inhibition, 88.7% of the biofilm is removed at 1000 µg mL−1. Moreover, the nanoparticles have an excellent inhibitory effect on biofilm formation, the biofilm inhibition capacity can reach up to 90.3%. Taken together, this pH-tunable nanoparticle can be employed as a new generation treatment strategy to fight against the fast-growing MRSA infection.  相似文献   

15.
16.
Resistance to conventional antibiotics has raised worldwide attention. Notably, Methicillin‐resistant Staphylococcus aureus (MRSA) has become one of the most life‐threatening health concerns. Although effective against bacterial infections, conventional antibiotics have also showed a series of side effects such as gut microbiota imbalance. An alternative is in urgent need in order to combat bacterial infections. Antivirulence represents a new approach to circumvent these shortcomings, which focuses on disarming the “weapons” for pathogenicity without much selective pressure on bacterial survival. In this review, we place emphasis on the chemical modulation of biosynthesis, assembly, function and the regulation of some major virulence factors in S. aureus, which we hope will help the development of antivirulence modulators.  相似文献   

17.
Ruthenium(II) polypyridyl complexes featuring peripheral quaternary ammonium structures were found to be able to selectively inactivate Gram-positive Staphylococcus aureus (S. aureus), including methicillin-resistant S. aureus (MRSA) upon visible light irradiation, but have low phototoxicity toward 293T cells, L02 cells and lack hemolysis toward rabbit red blood cells (RBC), exhibiting promising potential as a novel type of antimicrobial photodynamic therapy (aPDT) agents.  相似文献   

18.
Staphylococcus aureus is an opportunistic pathogen that can cause fatal bacterial infections. MurD catalyzes the formation of peptide bond between UDP-N-acetylehyl-l-alanine and d-glutamic acid, which plays an important role in the synthesis of peptidoglycan and the formation of cell wall by S. aureus. Because S. aureus is resistant to most existing antibiotics, it is necessary to develop new inhibitors. In this study, Schrodinger 11.5 Prime homology modeling was selected to prepare the protein model of MurD enzyme, and its structure was optimized. We used a virtual screening program and similarity screening to screen 47163 compounds from three marine natural product libraries to explore new inhibitors of S. aureus. ADME provides analysis of the physicochemical properties of the best performing compounds during the screening process. To determine the stability of the docking effect, a 100 ns molecular dynamics was performed to verify how tightly the compound was bound to the protein. By docking analysis and molecular dynamics analysis, both 46604 and 46608 have strong interaction with the docking pocket, have good pharmacological properties, and maintain stable conformation with the target protein, so they have a chance to become drugs for S. aureus. Through virtual screening, similarity screening, ADME study and molecular dynamics simulation, 46604 and 46608 were selected as potential drug candidates for S. aureus.  相似文献   

19.
Methicillin-resistant Staphylococcus aureus (MRSA) is a serious threat to global public health due to its capacity of tolerate conventional antibiotics. Medicinal plants are traditionally used to treat infectious diseases caused by bacterial pathogens. In the present study, 16 medicinal plants were screened for antibacterial activities to preselect more effective species. Ethanol extracts of selected medicinal plants (Caesalpinia sappan L., Glycyrrhiza uralensis Fisch., Sanguisorba officinalis L., and Uncaria gambir Roxb) were partitioned successively with different solvents (n-hexane, chloroform, ethyl acetate, 1-butanol, and water). Disc diffusion assay and broth microdilution were performed to evaluate the antibacterial activities of plant extracts and fractions against Staphylococcus aureus strains. Furthermore, the cytotoxicity of the extracts and fractions was determined against the human hepatoma (HepG2) and human lung carcinoma (A549) cell lines using a trypan blue exclusion method. A few extracts and fractions showed significant inhibitory effects on the bacterial growth of all tested strains, including multidrug-resistance (MDR) clinical isolates. The ethyl acetate fraction of C. sappan had the most potent effects with minimum inhibitory/bactericidal concentrations (MIC/MBC) of 31.2/62.5 μg/mL and showed low cytotoxicity with over 90% cell viability in both cells. Our results suggest that medicinal plants have considerable potential as alternatives to conventional antibiotics.  相似文献   

20.
Cationic and amphiphilic polymers are known to exert broad-spectrum antibacterial activity by a putative mechanism of membrane disruption. Typically, nonspecific binding to hydrophobic components of the complex biological milieu, such as globular proteins, is considered a deterrent to the successful application of such polymers. To evaluate the extent to which serum deactivates antibacterial polymethacrylates, we compared their minimum inhibitory concentrations in the presence and absence of fetal bovine serum. Surprisingly, we discovered that the addition of fetal bovine serum (FBS) to the assay media in fact enhances the antimicrobial activity of polymers against Gram-positive bacteria S. aureus, whereas the opposite is the case for Gram-negative E. coli. Here, we present these unexpected trends and develop a hypothesis to potentially explain this unusual phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号