首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the influence of an exponential volume fraction law on the vibration frequencies of thin functionally graded cylindrical shells is studied. Material properties in the shell thickness direction are graded in accordance with the exponential law. Expressions for the strain-displacement and curvature-displacement relationships are taken from Love's thin shell theory. The Rayleigh-Ritz approach is used to derive the shell eigenfrequency equation. Axial modal dependence is assumed in the characteristic beam functions. Natural frequencies of the shells are observed to be dependent on the constituent volume fractions. The results are compared with those available in the literature for the validity of the present methodology.  相似文献   

2.
The vibration of the layered cylindrical shells filled with a quiescent, incompressible, and inviscid fluid is analyzed. The governing equations of the cylindrical shells are derived by Love’s approximation. The solutions of the displacement functions are assumed in a separable form to obtain a system of coupled differential equations in terms of the displacement functions. The displacement functions are approximated by Bickley-type splines. A generalized eigenvalue problem is obtained and solved numerically for the frequency parameter and an associated eigenvector of the spline coefficients. Two layered shells with three different types of materials under clamped-clamped (C-C) and simply supported (S-S) boundary conditions are considered. The variations of the frequency parameter with respect to the relative layer thickness, the length-to-radius ratio, the length-to-thickness ratio, and the circumferential node number are analyzed.  相似文献   

3.
Love’s first approximation theory is used to analyze the natural frequencies of rotating functionally graded cylindrical shells.To verify the validity of the present method,the natural frequencies of the simply supported non-rotating isotropic cylindrical shell and the functionally graded cylindrical shell are compared with available published results.Good agreement is obtained.The effects of the power law index,the wave numbers along the x-and θ-directions,and the thickness-to-radius ratio on the natural frequencies of the simply supported rotating functionally graded cylindrical shell are investigated by several numerical examples.It is found that the fundamental frequencies of the backward waves increase with the increasing rotating speed,the fundamental frequencies of the forward waves decrease with the increasing rotating speed,and the forward and backward waves frequencies increase with the increasing thickness-to-radius ratio.  相似文献   

4.
The natural frequencies of cylindrical shells filled with a fluid and having the ends either simply supported or clamped are determined. Conditions are studied under which the natural frequencies of the shell are close or multiple __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 5, pp. 42–49, May 2006.  相似文献   

5.
J-integral defined by Rice depends on the constitutive relation of mediums. In the present paper, a conservative integral independent of the constitutive relation of mediums is defined in order to extend Rice’s definition of the J-integral which depends on the constitutive relation. Its main properties which are similar to those of the prevailing J-integral are proved. In the case of the elastic mediums, the extensive conservative integral is the same with Rice’s J-integral.  相似文献   

6.
An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which are metal or ceramic subjected to an axial compressive load and an external uniform pressure. Shells are reinforced by stringers and rings, in which the material properties of shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution. Two models of coated shell-stiffener arrangements are investigated. The change of the spacing between stringers in the meridional direction is taken into account. A couple set of three-variable-coefficient partial differential equations in terms of displacement components are solved by the Galerkin method. A closed-form expression for determining the buckling load is obtained. The numerical examples are presented and compared with previous works.  相似文献   

7.
利用从弹性力学的三维基本方程导得的状态方程,结合层合近似模型,求得了柱型正交各向异性功能梯度圆柱壳的自由振动频率,给出了数值算例,并与前人结果作了比较,文末讨论了相关参数的影响。  相似文献   

8.
区别于一般圆柱壳,开口圆柱壳沿周向是不封闭的,因此具有四个边界,本文根据轴向梁式振动和轴向曲拱振动特性对各种端部与侧边边界条件下的壳体提出统一的位移振型函数,并根据哈密顿原理建立了材料参数与空间坐标相关的正交各向异性开口圆柱壳的动力变分方程,求出了不同材料属性下开敞圆柱壳固有频率与振型解的一般解析表达式,适用于任意边界条件下不同材料的开敞圆柱壳自由振动分析.  相似文献   

9.
A study of free vibration of orthotropic circular cylindrical shells is presented. The vibration control equations of shells are based on Flügge classical thin shell theory. Wave approach is used in the analysis, in which the boundary conditions of shells can be simplified according to the associated beam. The free vibration frequencies of shells can be obtained from a frequency polynomial equation of order 6. The parametric analysis of the free vibration of orthotropic cylindrical shells is investigated using a statistical method. The effects of geometrical parameters and material characteristics upon frequencies are investigated here. Multivariate analysis (MVA) can be a useful tool for this parametric study. Some statistical characteristics, including correlation analysis and ANOVA are applied. ANOVA has been conducted to predict the statistical significance of the various factors. Calculations are performed in the Minitab statistical software. The results show that the L/R, h/R and m have larger effects on the lowest frequency. The importance of input parameters is ranked according to their contributions to the total variance. A knowledge and data visualization approach, Self-organizing mapping (SOM) is also adopted here for mining some intrinsic characteristics of shells.  相似文献   

10.
Based on the fundamental dynamic equations of functionally graded material (FGM) cylindrical shell, this paper investigates the sound radiation of vibrational FGM shell in water by mobility method. This model takes into account the exterior fluid loading due to the sound press radiated by the FGM shell. The FGM cylindrical shell was excited by a harmonic line radial force uniformly distributing along the generator. The FGM shell equations of motion, the Helmholtz equation in the exterior fluid medium and the continuity equation at fluid-shell interface are used in this vibroacoustic problem. The expressions of sound radiation efficiency and sound field of the FGM shell have been derived by mobility method. Radiation efficiency, modal mobility and the directivity pattern of the sound field are solved numerically. In particular, radiation efficiency and directivity pattern with various power law index are analyzed.  相似文献   

11.
We obtain exact and approximate solutions to buckling problems for circular cylindrical open shells hinged at all edges and quasiregularly reinforced with discrete longitudinal ribs. It is shown that analogous solutions to natural-vibration problems for such shells can easily be found Translated from Prikladnaya Mekhanika, Vol. 44, No. 12, pp. 83–92, December 2008.  相似文献   

12.
The natural dynamic characteristics of a circular cylindrical tube made of three-directional(3 D) functional graded material(FGM) based on the Timoshenko beam theory are investigated. Hamilton’s principle is utilized to derive the novel motion equations of the tube, considering the interactions among the longitudinal, transverse,and rotation deformations. By dint of the differential quadrature method(DQM), the governing equations are discretized to conduct the analysis of natural dynamic charact...  相似文献   

13.
The present work discusses the problem of dynamic stability of a viscoelas- tic circular cylindrical shell,according to revised Timoshenko theory,with an account of shear deformation and rotatory inertia in the geometrically nonlinear statement.Pro- ceeding by Bubnov-Galerkin method in combination with a numerical method based on the quadrature formula the problem is reduced to a solution of a system of nonlinear integro-differential equations with singular kernel of relaxation.For a wide range of vari- ation of physical mechanical and geometrical parameters,the dynamic behavior of the shell is studied.The influence of viscoelastic properties of the material on the dynamical stability of the circular cylindrical shell is shown.Results obtained using different theories are compared.  相似文献   

14.
基于三维弹性理论,导出了带有压电层的圆柱形梯度壳的动力学方程以及相应的边界条件,用幂级数展开法得到了求解该圆柱形梯度壳自由振动的三维精确公式.通过实例模型求解了该壳体的自由振动的固有频率;分析了不同电学边界条件对壳体的振动频率的影响。结果可评估各种近似理论解和数值解的正确性。  相似文献   

15.
Based on (1), we discuss the method of solution for the stress states in cylindrical shells of medium length with arbitrary open-section. As an example, the stresses in a channel with semi-circle section were calculated, and the results were compared with those from the elementary beam theory.  相似文献   

16.
The elastoplastic state of thin cylindrical shells with two equal circular holes is analyzed with allowance made for finite deflections. The shells are made of an isotropic homogeneous material. The load is internal pressure of given intensity. The distribution of stresses along the hole boundary and in the stress concentration zone (when holes are closely spaced) is analyzed by solving doubly nonlinear boundary-value problems. The results obtained are compared with the solutions that allow either for physical nonlinearity (plastic strains) or geometrical nonlinearity (finite deflections) and with the numerical solution of the linearly elastic problem. The stresses near the holes are analyzed for different distances between the holes and nonlinear factors.Translated from Prikladnaya Mekhanika, Vol. 40, No. 10, pp. 107–112, October 2004.  相似文献   

17.
Free vibration of circular cylindrical shell with constrained layer damping   总被引:1,自引:0,他引:1  
Free vibration characteristics of circular cylindrical shell with passive constrained layer damping (PCLD) are presented. Wave propagation approach rather than finite element method, transfer matrix method, and Rayleigh-Ritz method is used to solve the problem of vibration of PCLD circular cylindrical shell under a simply supported boundary condition at two ends. The governing equations of motion for the orthotropic cylindrical shell with PCLD are derived on the base of Sanders’ thin shell theory. Numerical results show that the present method is more effective in comparison with other methods. The effects of the thickness of viscoelastic core and constrained layer, the elastic modulus ratio of orthotropic constrained layer, the complex shear modulus of viscoelastic core on frequency parameter, and the loss factor are discussed.  相似文献   

18.
The dynamic interaction of thin cylindrical shells with the fluid flow inside them under external periodic loads is studied. A technique is proposed to calculate the parameters of forced nonlinear oscillations of shells with a fluid moving with nearly critical velocities. The amplitude-frequency characteristics of the fluid-shell system under steady-state oscillation are plotted __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 4, pp. 91–99, April 2006.  相似文献   

19.
论文从偏心圆柱壳截面的几何特性出发,将偏心圆柱壳问题转化为一个周向变厚度圆柱壳问题,随后利用其状态向量之间的传递矩阵将壳体的振动控制方程转化为矩阵微分方程形式,通过Magnus级数法求解传递矩阵得到频率方程.采用Lagrange插值法得到偏心圆柱壳体自由振动状态下的固有频率,并且与圆柱壳的固有频率进行了比较.对影响结构固有频率的主要参数进行了分析,得到了这些参数和固有频率之间的关系.论文不仅提出了一种有效求解偏心圆柱壳固有频率的新方法,同时亦可为检测偏心圆柱壳的偏心距提供一种新的思路和方法.  相似文献   

20.
A compressive postbuckling analysis is presented for a laminated cylindrical shell with piezoelectric actuators subjected to the combined action of mechanical, electric and thermal loads. The temperature field considered is assumed to be a uniform distribution over the shell surface and through the shell thickness, and the electric field is assumed to be the transverse component EZ only. The material properties are assumed to be independent of the temperature and the electric field. The governing equations are based on the classical shell theory with von Kármán–Donnell-type kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of hybrid laminated cylindrical shells. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the compressive postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical thin shells with fully covered or embedded piezoelectric actuators under different sets of thermal and electric loading conditions. The effects played by temperature rise, applied voltage, shell geometric parameter, stacking sequence, as well as initial geometric imperfections are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号