首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
For any natural number k, a graph G is said to be pancyclic mod k if it contains a cycle of every length modulo k. In this paper, we show that every K1,4-free graph G with minimum degree δ(G)k+3 is pancyclic mod k and every claw-free graph G with δ(G)k+1 is pancyclic mod k, which confirms Thomassen's conjecture (J. Graph Theory 7 (1983) 261–271) for claw-free graphs.  相似文献   

2.
Let β(G), Γ(G) and IR(G) be the independence number, the upper domination number and the upper irredundance number, respectively. A graph G is calledΓ-perfect if β(H) = Γ(H), for every induced subgraph H of G. A graph G is called IR-perfect if Γ(H) = IR(H), for every induced subgraph H of G. In this paper, we present a characterization of Γ-perfect graphs in terms of a family of forbidden induced subgraphs, and show that the class of Γ-perfect graphs is a subclass of IR-perfect graphs and that the class of absorbantly perfect graphs is a subclass of Γ-perfect graphs. These results imply a number of known theorems on Γ-perfect graphs and IR-perfect graphs. Moreover, we prove a sufficient condition for a graph to be Γ-perfect and IR-perfect which improves a known analogous result.  相似文献   

3.
For any positive integer n and any graph G a set D of vertices of G is a distance-n dominating set, if every vertex vV(G)−D has exactly distance n to at least one vertex in D. The distance-n domination number γ=n(G) is the smallest number of vertices in any distance-n dominating set. If G is a graph of order p and each vertex in G has distance n to at least one vertex in G, then the distance-n domination number has the upper bound p/2 as Ore's upper bound on the classical domination number. In this paper, a characterization is given for graphs having distance-n domination number equal to half their order, when the diameter is greater or equal 2n−1. With this result we confirm a conjecture of Boland, Haynes, and Lawson.  相似文献   

4.
Least domination in a graph   总被引:2,自引:0,他引:2  
The least domination number γL of a graph G is the minimum cardinality of a dominating set of G whose domination number is minimum. The least point covering number L of G is the minimum cardinality of a total point cover (point cover including every isolated vertex of G) whose total point covering number is minimum. We prove a conjecture of Sampathkumar saying that in every connected graph of order n 2. We disprove another one saying that γL L in every graph but instead of it, we establish the best possible inequality . Finally, in relation with the minimum cardinality γt of a dominating set without isolated vertices (total dominating set), we prove that the ratio γLt can be in general arbitrarily large, but remains bounded by if we restrict ourselves to the class of trees.  相似文献   

5.
Choosability conjectures and multicircuits   总被引:5,自引:0,他引:5  
This paper starts with a discussion of several old and new conjectures about choosability in graphs. In particular, the list-colouring conjecture, that ch′=χ′ for every multigraph, is shown to imply that if a line graph is (a : b)-choosable, then it is (ta : tb)-choosable for every positive integer t. It is proved that ch(H2)=χ(H2) for many “small” graphs H, including inflations of all circuits (connected 2-regular graphs) with length at most 11 except possibly length 9; and that ch″(C)=χ″(C) (the total chromatic number) for various multicircuits C, mainly of even order, where a multicircuit is a multigraph whose underlying simple graph is a circuit. In consequence, it is shown that if any of the corresponding graphs H2 or T(C) is (a : b)-choosable, then it is (ta : tb)-choosable for every positive integer t.  相似文献   

6.
An L(2,1)-coloring of a graph G is a coloring of G's vertices with integers in {0,1,…,k} so that adjacent vertices’ colors differ by at least two and colors of distance-two vertices differ. We refer to an L(2,1)-coloring as a coloring. The span λ(G) of G is the smallest k for which G has a coloring, a span coloring is a coloring whose greatest color is λ(G), and the hole index ρ(G) of G is the minimum number of colors in {0,1,…,λ(G)} not used in a span coloring. We say that G is full-colorable if ρ(G)=0. More generally, a coloring of G is a no-hole coloring if it uses all colors between 0 and its maximum color. Both colorings and no-hole colorings were motivated by channel assignment problems. We define the no-hole span μ(G) of G as ∞ if G has no no-hole coloring; otherwise μ(G) is the minimum k for which G has a no-hole coloring using colors in {0,1,…,k}.

Let n denote the number of vertices of G, and let Δ be the maximum degree of vertices of G. Prior work shows that all non-star trees with Δ3 are full-colorable, all graphs G with n=λ(G)+1 are full-colorable, μ(G)λ(G)+ρ(G) if G is not full-colorable and nλ(G)+2, and G has a no-hole coloring if and only if nλ(G)+1. We prove two extremal results for colorings. First, for every m1 there is a G with ρ(G)=m and μ(G)=λ(G)+m. Second, for every m2 there is a connected G with λ(G)=2m, n=λ(G)+2 and ρ(G)=m.  相似文献   


7.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. A path partition of a graph G is a collection P of paths in G such that every edge of G is in exactly one path in P. The minimum cardinality of a path partition of G is called the path partition number of G and is denoted by π. In this paper we determine ηa and π for several classes of graphs and obtain a characterization of all graphs with Δ 4 and ηa = Δ − 1. We also obtain a characterization of all graphs for which ηa = π.  相似文献   

8.
Block graphs with unique minimum dominating sets   总被引:1,自引:0,他引:1  
For any graph G a set D of vertices of G is a dominating set, if every vertex vV(G)−D has at least one neighbor in D. The domination number γ(G) is the smallest number of vertices in any dominating set. In this paper, a characterization is given for block graphs having a unique minimum dominating set. With this result, we generalize a theorem of Gunther, Hartnell, Markus and Rall for trees.  相似文献   

9.
Haruhide Matsuda   《Discrete Mathematics》2004,280(1-3):241-250
Let 1a<b be integers and G a Hamiltonian graph of order |G|(a+b)(2a+b)/b. Suppose that δ(G)a+2 and max{degG(x), degG(y)}a|G|/(a+b)+2 for each pair of nonadjacent vertices x and y in G. Then G has an [a,b]-factor which is edge-disjoint from a given Hamiltonian cycle. The lower bound on the degree condition is sharp. For the case of odd a=b, there exists a graph satisfying the conditions of the theorem but having no desired factor. As consequences, we have the degree conditions for Hamiltonian graphs to have [a,b]-factors containing a given Hamiltonian cycle.  相似文献   

10.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. In this paper we characterize the class of graphs G for which ηa=Δ−1 where Δ is the maximum degree of a vertex in G.  相似文献   

11.
A weighted graph (G,w) is a graph G together with a positive weight-function on its vertex set w : V(G)→R>0. The weighted domination number γw(G) of (G,w) is the minimum weight w(D)=∑vDw(v) of a set DV(G) such that every vertex xV(D)−D has a neighbor in D. If ∑vV(G)w(v)=|V(G)|, then we speak of a normed weighted graph. Recently, we proved that
for normed weighted bipartite graphs (G,w) of order n such that neither G nor the complement has isolated vertices. In this paper we will extend these Nordhaus–Gaddum-type results to triangle-free graphs.  相似文献   

12.
A dominating set for a graph G = (V, E) is a subset of vertices VV such that for all v ε VV′ there exists some u ε V′ for which {v, u} ε E. The domination number of G is the size of its smallest dominating set(s). For a given graph G with minimum size dominating set D, let m1 (G, D) denote the number of edges that have neither endpoint in D, and let m2 (G, D) denote the number of edges that have at least one endpoint in D. We characterize the possible values that the pair (m1 (G, D), m2 (G, D)) can attain for connected graphs having a given domination number.  相似文献   

13.
We study the concept of strong equality of domination parameters. Let P1 and P2 be properties of vertex subsets of a graph, and assume that every subset of V(G) with property P2 also has property P1. Let ψ1(G) and ψ2(G), respectively, denote the minimum cardinalities of sets with properties P1 and P2, respectively. Then ψ1(G2(G). If ψ1(G)=ψ2(G) and every ψ1(G)-set is also a ψ2(G)-set, then we say ψ1(G) strongly equals ψ2(G), written ψ1(G)≡ψ2(G). We provide a constructive characterization of the trees T such that γ(T)≡i(T), where γ(T) and i(T) are the domination and independent domination numbers, respectively. A constructive characterization of the trees T for which γ(T)=γt(T), where γt(T) denotes the total domination number of T, is also presented.  相似文献   

14.
For a positive integer k, a k-subdominating function of a graph G=(V,E) is a function f : V→{−1,1} such that ∑uNG[v]f(u)1 for at least k vertices v of G. The k-subdomination number of G, denoted by γks(G), is the minimum of ∑vVf(v) taken over all k-subdominating functions f of G. In this article, we prove a conjecture for k-subdomination on trees proposed by Cockayne and Mynhardt. We also give a lower bound for γks(G) in terms of the degree sequence of G. This generalizes some known results on the k-subdomination number γks(G), the signed domination number γs(G) and the majority domination number γmaj(G).  相似文献   

15.
Jianxiang Li   《Discrete Mathematics》2003,260(1-3):217-221
Let G be a graph of order n, and let a and b be integers such that 1a<b. Let δ(G) be the minimum degree of G. Then we prove that if δ(G)(k−1)a, n(a+b)(k(a+b)−2)/b, and |NG(x1)NG(x2)NG(xk)|an/(a+b) for any independent subset {x1,x2,…,xk} of V(G), where k2, then G has an [a,b]-factor. This result is best possible in some sense.  相似文献   

16.
Eigenvalues of the Laplacian of a graph   总被引:24,自引:0,他引:24  
Let G be a finite undirected graph with no loops or multiple edges. We define the Laplacian matrix of G,Δ(G)by Δij= degree of vertex i and Δij-1 if there is an edge between vertex i and vertex j. In this paper we relate the structure of the graph G to the eigenvalues of A(G): in particular we prove that all the eigenvalues of Δ(G) are non-negative, less than or equal to the number of vertices, and less than or equal to twice the maximum vertex degree. Precise conditions for equality are given.  相似文献   

17.
A graph G = G(V, E) with lists L(v), associated with its vertices v V, is called L-list colourable if there is a proper vertex colouring of G in which the colour assigned to a vertex v is chosen from L(v). We say G is k-choosable if there is at least one L-list colouring for every possible list assignment L with L(v) = k v V(G).

Now, let an arbitrary vertex v of G be coloured with an arbitrary colour f of L(v). We investigate whether the colouring of v can be continued to an L-list colouring of the whole graph. G is called free k-choosable if such an L-list colouring exists for every list assignment L (L(v) = k v V(G)), every vertex v and every colour f L(v). We prove the equivalence of the well-known conjecture of Erd s et al. (1979): “Every planar graph is 5-choosable” with the following conjecture: “Every planar graph is free 5-choosable”.  相似文献   


18.
Let G be a simple graph. The size of any largest matching in G is called the matching number of G and is denoted by ν(G). Define the deficiency of G, def(G), by the equation def(G)=|V(G)|−2ν(G). A set of points X in G is called an extreme set if def(GX)=def(G)+|X|. Let c0(G) denote the number of the odd components of G. A set of points X in G is called a barrier if c0(GX)=def(G)+|X|. In this paper, we obtain the following:

(1) Let G be a simple graph containing an independent set of size i, where i2. If X is extreme in G for every independent set X of size i in G, then there exists a perfect matching in G.

(2) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is extreme in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|i, and |Γ(Y)||U|−i+m+1 for any Y U, |Y|=m (1mi−1).

(3) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is a barrier in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|=i, and |Γ(Y)|m+1 for any Y U, |Y|=m (1mi−1).  相似文献   


19.
Harary's conjectures on integral sum graphs   总被引:6,自引:0,他引:6  
Zhibo Chen 《Discrete Mathematics》1996,160(1-3):241-244
Let N denote the set of positive integers and Z denote all integers. The (integral) sum graph of a finite subset S N(Z) is the graph (S, E) with uv ε E if and only if u + v ε S. A graph G is said to be an (integral) sum graph if it is isomorphic to the (integral) sum graph of some S N(Z). The (integral) sum number of a given graph G is the smallest number of isolated nodes which when added to G result in an (integral) sum graph.

We show that the integral sum number of a complete graph with n 4 nodes equals 2n − 3, which proves a conjecture of Harary. And we disprove another conjecture of Harary by showing that there are infinitely many trees which are not caterpillars but are integral sum graphs.  相似文献   


20.
A graph is called supereulerian if it has a spanning closed trail. Let G be a 2-edge-connected graph of order n such that each minimal edge cut SE(G) with |S|3 satisfies the property that each component of GS has order at least (n−2)/5. We prove that either G is supereulerian or G belongs to one of two classes of exceptional graphs. Our results slightly improve earlier results of Catlin and Li. Furthermore, our main result implies the following strengthening of a theorem of Lai within the class of graphs with minimum degree δ4: If G is a 2-edge-connected graph of order n with δ(G)4 such that for every edge xyE(G) , we have max{d(x),d(y)}(n−2)/5−1, then either G is supereulerian or G belongs to one of two classes of exceptional graphs. We show that the condition δ(G)4 cannot be relaxed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号