首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
林涛  万能  韩敏  徐骏  陈坤基 《物理学报》2009,58(8):5821-5825
使用软化学方法在碱性溶液中制备出了颗粒尺寸分布均匀的SnO2纳米颗粒,使用透射电子显微镜(TEM)、X射线衍射(XRD)、光致发光谱(PL)和光吸收谱等方法分析与表征了SnO2纳米颗粒的结构和光学性能.实验中通过表面活性剂的加入来控制纳米颗粒的结晶与凝聚.XRD,TEM的结果表明,原始制备出的SnO2纳米颗粒的平均粒径小于4 nm,为完好的晶体状态.纳米颗粒经过400—1000 ℃退火后晶粒尺寸进一步增大.光吸收谱表明,相对于体材料,纳米颗粒的禁带宽度展宽并随颗粒尺寸增大而红移.光致发光谱测试表明,不同温度下退火的SnO2纳米颗粒在350—750 nm有较强的发光,研究表明这是来源于颗粒表面的氧空位缺陷发光. 关键词: 氧化锡 表面活性剂 纳米颗粒 光致发光  相似文献   

2.
In2S3 thin films were grown on glass substrates by means of the vacuum thermal evaporation technique and subsequently thermally annealed in nitrogen and free air atmosphere from 250 to 350 °C for different durations. Experimental parameters have been adjusted in order to optimize the annealing conditions, and to obtain high band gap energy at low deposition temperature, as required for photovoltaic applications. In order to improve our understanding of the influence of the deposition and annealing parameters on device performance, we have investigated our indium sulfide material by X-ray diffraction, energy dispersive X-ray analysis (EDAX), atomic force microscopy (AFM) and spectrophotometry. The optical and structural properties of the films were studied as a function of the annealing temperature and durations. X-ray diffraction analysis shows the initial amorphous nature of deposited In-S thin films and the phase transition into crystalline In2S3 upon thermal annealing. Films show a good homogeneity and optical direct band gap energy about 2.2 eV. An annealing temperature of 350 °C during 60 min in air atmosphere were the optimal conditions.  相似文献   

3.
The growth temperature and post annealing-dependent optical and structural effect of RF magnetron sputtered ZnO thin films were examined. As the growth temperature increased, the lattice constant increased and approached the bulk value, suggesting a decrease in interfacial strain between the substrate and thin film. For the post annealed samples, the interfacial strain decreased further and was close to the bulk value regardless of the post annealing environments (in air and O2). The optical properties of all ZnO thin films examined and revealed higher transparency (>90%). Furthermore, the optical band gap varied according to the growth temperature and post annealing environments due to a decrease in the interfacial strain effect.  相似文献   

4.
The optical properties of hexagonal boron nitride (h-BN) thin films were studied in this paper. The films were characterized by Fourier transform infrared spectroscopy, UV--visible transmittance and reflection spectra. h-BN thin films with a wide optical band gap Eg (5.86 eV for the as-deposited film and 5.97 eV for the annealed film) approaching h-BN single crystal were successfully prepared by radio frequency (RF) bias magnetron sputtering and post-deposition annealing at 970~K. The optical absorption behaviour of h-BN films accords with the typical optical absorption characteristics of amorphous materials when fitting is made by the Urbach tail model. The annealed film shows satisfactory structure stability. However, high temperature still has a significant effect on the optical absorption properties, refractive index n, and optical conductivity σ of h-BN thin films. The blue-shift of the optical absorption edge and the increase of Eg probably result from stress relaxation in the film under high temperatures. In addition, it is found that the refractive index clearly exhibits different trends in the visible and ultraviolet regions. Previous calculational results of optical conductivity of h-BN films are confirmed in our experimental results.  相似文献   

5.
The optical absorption of leucosapphire and polycrystalline corundum (polycor) upon coimplantation of iron and chromium ions and subsequent annealing in vacuum is studied. The structure of the states localized in the band gap induced by radiation defects exhibits a higher stability to annealing as compared to implantation of other types of ions into aluminum oxide and to separate irradiation with iron and chromium ions. The governing contribution to the exponential and interband absorption is made by substitutional defects of either type, their clusters, and impurity-vacancy complexes. The effect of incorporated iron ions on the population of levels of chromium-containing defect clusters, on their recharge, and on interaction with intrinsic radiation and biographical defects is revealed. Mixed clusters of substitutional defects are optically active in a spectral range of 2.0–4.0 eV after annealing at a temperature of 1300–1600 K.  相似文献   

6.
We have prepared SrTiO3/BaTiO3 thin films with multilayered structures deposited on indium tin oxide (ITO) coated glass by a sol-gel deposition and heating at 300-650 °C. The optical properties were obtained by UV-vis spectroscopy. The films show a high transmittance (approximately 85%) in the visible region. The optical band gap of the films is tunable in the 3.64-4.19 eV range by varying the annealing temperature. An abrupt decrease towards the bulk band gap value is observed at annealing temperatures above 600 °C. The multilayered film annealed at 650 ° C exhibited the maximum refractive index of 2.09-1.91 in the 450-750 nm wavelength range. The XRD and AFM results indicate that the films annealed above 600 ° C are substantially more crystalline than the films prepared at lower temperatures which were used to change their optical band gap and complex refractive index to an extent that depended on the annealing temperature.  相似文献   

7.
R. Sreeja 《Optics Communications》2010,283(14):2908-2913
ZnO nanoparticles embedded in the PMMA matrix were prepared by wet chemical synthesis. The optical band gap of the ZnO nanoparticles decreases with increase in NaOH concentration. The photoluminescence spectra of the ZnO colloids show strong UV, green and blue emissions. The optical absorptive nonlinearity of the ZnO:PMMA composites was analyzed using an open aperture Z-scan technique which shows optical limiting type nonlinearity due to the two photon absorption in ZnO. The efficiency of limiting is found to increase with decrease in the band gap. ZnO:PMMA shows a negative value for nonlinear refractive index n2 and the magnitude of n2 increases with decrease of band gap. Stability as well as the mechanical properties of the nanoparticles embedded in the PMMA matrix makes it more suitable for device fabrication as compared to the ZnO nanoparticles dispersed in solution.  相似文献   

8.
Very thin (nanometric) silicon layers were grown in between silicon nitride barriers by SiH2Cl2/H2/NH3 plasma-enhanced chemical vapor deposition (PECVD). The multilayer structures were deposited onto fused silica and silicon substrates. Deposition conditions were selected to favor Si cluster formation of different sizes in between the barriers of silicon nitride. The samples were thermally treated in an inert atmosphere for 1 h at 500 °C for dehydrogenation. Room-temperature photoluminescence (RT-PL) and optical transmission in different ranges were used to evaluate the optical properties of the structures. UV-VIS absorption spectra present two band edges. These band edges are well fitted by the Tauc model typically used for amorphous materials. RT-PL spectra are characterized by strong broad bands, which have a blue shift as a function of the deposition time of the silicon layer, even for as-grown samples. The broad luminescence could be associated with the confinement effect in the silicon clusters. After annealing of the samples, the PL bands red shift. This is probably due to the thermal decomposition of N-H bonds with further effusion of hydrogen and better nitrogen passivation of the nc-Si/SiNx interfaces.  相似文献   

9.
张传军  邬云骅  曹鸿  高艳卿  赵守仁  王善力  褚君浩 《物理学报》2013,62(15):158107-158107
在科宁7059玻璃, FTO, ITO, AZO四种衬底上磁控溅射CdS薄膜, 并在CdCl2+干燥空气380 ℃退火, 分别研究了不同衬底和退火工艺对CdS薄膜形貌、结构和光学性能的影响. 扫描电子显微镜形貌表明: 不同衬底原位溅射CdS薄膜的形貌不同, 退火后相应CdS薄膜的晶粒度和表面粗糙度明显增大. XRD衍射图谱表明: 不同衬底原位溅射和退火CdS薄膜均为六角相和立方相的混相结构, 退火前后科宁7059玻璃, FTO, AZO衬底上CdS薄膜有 H(002)/C(111) 最强衍射峰, ITO衬底原位溅射CdS薄膜没有明显的最强衍射峰, 退火后出现 H(002)/(111) 最强衍射峰. 紫外-可见分光光度计分析表明: AZO, FTO, ITO, 科宁7059玻璃衬底CdS薄膜的可见光平均透过率依次减小, 退火后相应衬底CdS薄膜的可见光平均透过率增大, 光学吸收系数降低; 退火显著增大了不同衬底CdS薄膜的光学带隙. 分析得出: 上述结果是由于不同衬底类型和退火工艺对CdS多晶薄膜的形貌、结构和带尾态掺杂浓度改变的结果. 关键词: CdS薄膜 磁控溅射 退火再结晶 带尾态  相似文献   

10.
Cobalt-doped ceria nanoparticles were synthesized using the polyol method under co-precipitation hydrolysis. The structural, morphological, optical and redox properties were observed to investigate the influence of different concentration of cobalt ion doping on the prepared CeO2 nanomaterials in terms of X-ray diffraction, field-emission transmission electron microscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, UV/vis absorption spectroscopy and temperature program reduction techniques. The optical band gap energy was calculated from the optical absorption spectra for doped ceria nanoparticles, which have been found to be 2.68, 2.77, and 2.82 eV for the 2, 4, and 7 mol% Co ion-doped CeO2 nanoparticles, respectively. As observed, the band gap energies increases as the doping Co ion concentrations increased, which could be due to significant increased oxygen vacancies with Co doping. The synergistic interaction between Co and CeO2 was the main factor responsible for high catalytic activity of cobalt-doped CeO2 model catalysts.  相似文献   

11.
Herein is a report of a study on a Cd1−xZnxS thin film grown on an ITO substrate using a chemical bath deposition technique. The as-deposited films were annealed in air at 400 °C for 30 min. The composition, surface morphology and structural properties of the as-deposited and annealed Cd1−xZnxS thin films were studied using EDX, SEM and X-ray diffraction techniques. The annealed films have been observed to possess a crystalline nature with a hexagonal structure. The optical absorption spectra were recorded within the range of 350-800 nm. The band gap of the as-deposited thin films varied from 2.46 to 2.62 eV, whereas in the annealed film these varied from 2.42 to 2.59 eV. The decreased band gap of the films after annealing was due to the improved crystalline nature of the material.  相似文献   

12.
ZnO and Al2O3 samples implanted with 30-keV silver ions with fluences in the interval (0.25–1.00) × 1017 ions/cm2 are studied by the method of optical photometry in the visible part of the spectrum. The optical transmission spectra of the implanted samples exhibit a selective band associated with surface plasmon resonance absorption of silver nanoparticles. The intensity of this band nonmonotonically depends on the implantation fluence. The silver ion depth distribution in the samples is calculated. It is shown that the non-monotonicity observed in experiments is due to an increase in the substrate sputtering ratio with increasing implantation fluence. It is found that vacuum thermal annealing of the implanted Al2O3 layers up to 700°C causes a considerable narrowing of the plasmon absorption bandwidth without a tangible change in its intensity. At higher annealing temperatures, the plasmon absorption band broadens and its intensity drops. Annealing of the ZnO films under such conditions causes their complete vaporization.  相似文献   

13.
Chalcogenide glasses are interesting materials due to their infrared transmitting properties and photo induced effects exhibited by them. Thin films with thickness of 3000 Å of the glasses Se75S25−xCdx with x=6, 8 and 10 at% prepared by melt quench technique were evaporated by thermal evaporation onto glass substrates under a vacuum of 10−6 Torr. The optical constants (absorption coefficient, refractive index and extinction coefficient) of as-prepared and annealed films have been studied as a function of photon energy in the wave length region 400-1000 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been found that the absorption coefficient and optical band gap increase with increasing annealing temperatures. The refractive index (n) and the extinction coefficient (k) were observed to decrease with increasing annealing temperature.  相似文献   

14.
In2O3:Sn (Indium Tin Oxide; ITO) films were prepared from a sol solution with highly crystalline ITO nanoparticles (less than 20 nm in size with 10 at.% Sn) which had been prepared by low-pressure spray pyrolysis (LPSP) in a single step. The ITO sol solution was prepared by dispersing LPSP-prepared ITO nanoparticles into ultra pure water. The nanoparticle ITO film was deposited on a glass substrate using a dip-coating method and then annealed in air at various temperatures. The optical transmittances of the ITO films were measured by UV–Vis spectrometry, and the films were found to have a high transparency to visible light (in the case of a film thickness of 250 nm annealed at 400°C, the transparency was in excess of 95% over the range λ=450–800 nm, with a maximum value near 100% at wavelengths above λ=700 nm). The optical transmittances of the films were influenced by the size of the ITO particle used, the film thickness and the annealing temperature. The ITO films showed a minimum resistivity of 9.5×10−2 Ω cm, and their resistivity was affected by both the ITO particle size and the annealing temperature used.  相似文献   

15.
Optical absorption of leucoosapphire and polycrystalline corund (polycor) is studied after irradiation with cobalt ions and subsequent annealing in a vacuum. The structure of states localized in the forbidden band and induced by various imperfections has a higher stability to annealing as compared to the case of implantation of other types of ions into aluminum oxide. The fan-like behavior of the dose-dependent absorption spectra is a consequence of the defect-induced disordering of crystal lattices. It is determined that intrinsic radiation-induced defects, substitutional defects, complexes containing them, and Co nanoparticles have an influence on the parameters of the focal point of the absorption spectra. The parameters of the interband and exponential absorption demonstrate the formation of a new multidefect material with a band gap width ranging from 5.3 to 5.5 eV and an absorption edge at 2.0–5.2 eV caused by the localized states of defect clusters.  相似文献   

16.
Absorption and luminescence properties of silver nanoclusters embedded in SiO2 matrixes were studied experimentally. Thin SiO2 films with different amount of silver were produced by co-deposition of Ag and SiO2 onto the silica substrates in vacuum. The thus obtained films possess three peaks in absorption spectra at 297, 329 and 401 nm and two peaks in luminescence spectra at about 500 and 650 nm. We ascribed these spectral features to silver nanoclusters of different sizes that present in the film. Thermal annealing transforms both absorption and emission spectra of the films. Lager clusters that are formed after annealing possess one absorption band at 350–450 nm and one luminescence band at 510 nm. The luminescence was observed only in samples with the silver content of less than 2.2%. Quenching of the luminescence in samples with higher concentration of silver is due to the presence of larger particles with plasmonic properties.  相似文献   

17.
The influence of annealing on the structure and opto-electronic properties of Cu0.9In1.0Se2.0 films prepared by solution growth technique has been studied. The films annealed at 500–520°C in air, vacuum (10?4 torr), In-vapour and Se-vapour show polycrystalline chalcopyrite structure with orientation perpendicular to the (220) plane. Films annealed in Se-vapour at 500°C for 30 min have maximum grain size (560 Å), minimum optical energy gap, maximum absorption coefficient, lowest resistivity, maximum photosensitivity and thus are suitable for photovoltaic applications. Annealing in In-vapour or in vacuum changesp-type CuInSe2 inton-type which possibly arises due to the increase in Se vacancies.  相似文献   

18.
Thin films of Zn40Se60 were prepared by the vacuum thermal evaporation technique. The influence of annealed temperature on the structural and optical properties was investigated using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical transmission. The XRD studies show that the as-deposited film is amorphous in nature, but the crystallinity improved with increasing the annealing temperature. Furthermore the particle size and crystallinity increased whereas the dislocation and strains decreased with increasing the annealing temperature. SEM studies showed that the annealing temperature induced changes in the morphology of the as-deposited sample. Various optical constant have been calculated for as-deposited and annealed films. The mechanism of the optical absorption follows the rule of direct transition. It was found that, the optical energy gap (Eg) decreased with increasing the annealing temperature. These results can be interpreted by the Davis and Motte model. On the other hand the maximum value of the refractive index (n) is shifted toward the long wavelength by increasing the annealing temperature.  相似文献   

19.
In the present study, we investigated the effect of vacuum annealing on the structural and optical properties of sol–gel dip-coated thin films of Zn0.75Mg0.25O alloy. XRD studies revealed that all these films were polycrystalline with hexagonal wurtzite structure and there was no trace of additional phases other than ZnO. With increase in annealing temperature, the samples showed preferred orientation along the c-axis, (0 0 2) plane and also peak narrowing and peak shift towards higher angles. The calculated values of mean crystallite size increased with annealing temperature indicating the improvement in crystallinity. Heat treatment caused lattice contraction and a decrease in film thickness. The optical transmittance in the visible spectral range enhanced with increase in annealing temperature while the fundamental absorption edge in the near ultra-violet region got red-shifted with annealing. The calculated values of optical energy gap of the samples showed a decrease with heat treatment due to the improvement in crystallinity during annealing and hence the subsequent decrease in quantum size effect.  相似文献   

20.
赵银女 《光子学报》2014,41(10):1242-1246
β-Ga2O3是一种宽带隙半导体材料,能带宽度Eg≈5.0eV,在光学和光电子学领域有广泛的应用。用射频磁控溅射方法在Si衬底和远紫外光学石英玻璃衬底制备了本征β-Ga2O3薄膜及Zn掺杂β-Ga2O3薄膜,用紫外 可见分光光度计、X射线衍射仪、荧光分光光度计对本征β-Ga2O3薄膜及Zn掺杂β-Ga2O3薄膜的光学透过、光学吸收、结构和光致发光进行了测量,研究了Zn掺杂和热退火对薄膜结构和光学性质的影响。退火后的β-Ga2O3薄膜为多晶结构,与本征β-Ga2O3薄膜相比,Zn掺杂β-Ga2O3薄膜的β-Ga2O3(111)衍射峰强度变小,结晶性变差,衍射峰位从35.69°减小至35.66°。退火后的Zn掺杂β-Ga2O3薄膜的光学带隙变窄,光学透过降低,光学吸收增强,出现了近边吸收,薄膜的紫外、蓝光及绿光发射增强。表明退火后Zn掺杂β-Ga2O3薄膜中的Zn原子被激活充当受主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号