首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substitution reactions of platinum complexes bearing cyclohexylamine/diamine moieties viz., [Pt(H(2)O)(N,N-bis(2-pyridylmethyl)cyclohexylamine)](CF(3)SO(3))(2), bpcHna; [{Pt(H(2)O)}(2)(N,N,N',N'-tetrakis(2-pyridylmethyl)-trans-1,4-cyclohexyldiamine)](CF(3)SO(3))(4), cHn and [{Pt(H(2)O)}(2)(N,N,N',N'-tetrakis(2-pyridylmethyl)-4,4'-dicyclohexylmethanediamine)](CF(3)SO(3))(4), dcHnm and phenylamine/diamine moieties viz., ([Pt(H(2)O)N,N-bis(2-pyridylmethyl)phenylamine)](CF(3)SO(3))(2), bpPha; [{Pt(H(2)O)}(2)(N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-phenyldiamine)](CF(3)SO(3))(4), mPh; [{Pt(H(2)O)}(2)(N,N,N',N'-tetrakis(2-pyridylmethyl)-1,4-phenyldiamine)](CF(3)SO(3))(4), pPh and [{Pt(H(2)O)}(2)(N,N,N',N'-tetrakis(2-pyridylmethyl)-4,4'-diphenylmethanediamine)](CF(3)SO(3))(4)), dPhm with thiourea nucleophiles were studied in acidified 0.01 M LiCF(3)SO(3) aqueous medium under pseudo-first-order conditions using stopped-flow and UV-visible spectrophotometric techniques. The rate of substitution follows a similar trend in the two sets of complexes and decreases in the order: bpcHna > dcHnm > cHn and bpPha > dPhm ≈ pPh ≈ mPh), respectively. The result of this study has shown that the rigidity and/or the planarity of a diamine bridge linking the two (2-pyridylmethyl)amine-chelated Pt(II) centres, influences the reactivity of the metal centres by protracting similar symmetry elements within the complexes, which determines the amount of steric influences felt on the coordination square-plane. Hence, the order of reactivity is controlled by both the steric hindrance and the magnitude of the trans σ-inductive effect originating from the linker towards the metal centre. These two factors also impact on the acidity of the complexes. The high negative entropies and low positive enthalpies support an associative mode of activation.  相似文献   

2.
A series of dinuclear Pt(II) complexes of the type [Pt2(N,N,N',N'-tetrakis(2-pyridylmethyl)diamine(H2O)2]4+ were synthesized. Acid-base titrations, and concentration and temperature dependent stopped-flow measurements of the reaction with chloride were performed to study the thermodynamic and kinetic behaviour of the dinuclear bridged complexes. The results indicate that there is a clear interaction between the two Pt(II) centres, which becomes weaker as the aliphatic chain increases in length. From a certain chain length onwards, the Pt(II) centres become independent of each other and exhibit identical thermodynamic and kinetic properties. The experimental results are discussed in reference to structures obtained by DFT (BP86/LACVP*) calculations.  相似文献   

3.
A dinuclear platinum(II) complex that was recently investigated in our group was tested for its cytostatic activity and found to be active against HeLa S3 cells. The complex consists of a bidentate N,N-donor chelating ligand system in which the two platinum centers are connected by an aliphatic chain of 10 methylene groups. The complex [Pt(2)(N(1),N(10)-bis(2-pyridylmethyl)-1,10-decanediamine)(OH(2))(4)](4+) (10NNpy) is of further special interest, since only little is known about the substitution behavior of such dinuclear platinum complexes that contain a bidentate coordination sphere. The complex was investigated using different biologically relevant nucleophiles, such as thiourea (tu), L-methionine (L-Met), glutathione (GSH), and guanine-5'-monophosphate (5'-GMP), at two different pH values (2 and 7.4). The substitution of coordinated water by these nucleophiles was studied under pseudo-first-order conditions as a function of nucleophile concentration, temperature, and pressure, using stopped-flow techniques and UV-vis spectroscopy. The reactivity of 10NNpy with the selected nucleophiles was found to be tu ? 5'-GMP > L-Met > GSH at pH 2 and GSH > tu > L-Met at pH 7.4. The results for the dinuclear 10NNpy complex were compared to those for the corresponding mononuclear reference complex [Pt(aminomethylpyridine)(OH(2))(2)](2+), Pt(amp), studied before in our group, by which the effect of the addition of an aliphatic chain, an increase in the overall charge, and a shift in the pK(a) values of the coordinated water ligands could be investigated. The reactivity order for Pt(amp) was found to be tu > GSH > L-Met at pH 7.4.  相似文献   

4.
The kinetics and mechanism of substitution reactions of novel monofunctional [Pt(tpdm)Cl](+) and [Pd(tpdm)Cl](+) complexes (where tpdm = tripyridinedimethane) and their aqua analogues with thiourea (tu), L-methionine (L-met), glutathione (GSH), and guanosine-5'-monophosphate (5'-GMP) were studied in 0.1 M NaClO(4) at pH = 2.5 (in the presence of 10 mM NaCl for reactions of the chlorido complexes). The reactivity of the investigated nucleophiles follows the order tu > l-met > GSH > 5'-GMP. The reported rate constants showed the higher reactivity of the Pd(II) complexes as well as the higher reactivity of the aqua complex than the corresponding chlorido complex. The negative values reported for the activation entropy as well as the activation volume confirmed an associative substitution mode. In addition, the molecular and crystal structure of [Pt(tpdm)Cl]Cl was determined by X-ray crystallography. The compound crystallizes in a monoclinic space group C2/c with two independent molecules of the complex and unit cell dimensions of a = 38.303(2) ?, b = 9.2555(5) ?, c = 27.586(2) ?, β = 133.573(1)°, and V = 7058.3(8) ?(3). The cationic complex [Pt(tpdm)Cl](+) exhibits square-planar coordination around the Pt(II) center. The lability of the [Pt(tpdm)Cl](+) complex is orders of magnitude lower than that of [Pt(terpyridine)Cl](+). Quantum chemical calculations were performed on the [Pt(tpdm)Cl](+) and [Pt(terpyridine)Cl](+) complexes and their reactions with thiourea. Theoretical computations for the corresponding Ni(II) complexes clearly demonstrated that π-back-bonding properties of the terpyridine chelate can account for acceleration of the nucleophilic substitution process as compared to the tpdm chelate, where introduction of two methylene groups prevents such an effective π-back bonding.  相似文献   

5.
Capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) has been used for investigating the influence of the sulfur containing amino acid L-methionine (L-Met) on the binding behavior of oxaliplatin (trans-R,R-diaminocyclohexane-(oxalato)platinum(II)) to 5'-GMP. L-Methionine competes with 5'-GMP for the platinum binding site and forms as well as 5'-GMP adducts with oxaliplatin. The formation of the prognosed complexes [Pt(DACH)(L-Met-S,N)]+ and [Pt(DACH)(5'-GMP)2]2- (DACH = 1,2-diaminocyclohexane) could be proved directly by using CE-ESI-MS. Furthermore, we could now bring forward proofs, that the coordination of 5'-GMP with oxaliplatin is inhibited by L-methionine and could show, that the 5'-GMP ligands of the [Pt(DACH) (5'-GMP)2]2- complex can be replaced slowly by L-methionine whereas methionine can not be replaced by GMP.  相似文献   

6.
Polynuclear copper complexes with two or three Cu(BPA) (BPA, bis(2-pyridylmethyl)amine) motifs, [Cu2(mTPXA)Cl4]3 H2O (1), [Cu2(pTPXA)Cl4]3 H2O (2), [Cu3(HPTAB)Cl5]Cl3 H2O (3) (mTPXA = N,N,N',N'-tetra-(2-pyridylmethyl)-m-xylylene diamine; pTPXA = N,N, N',N'-tetra-(2-pyridylmethyl)-p-xylylenediamine; HPTAB = N,N,N',N',N',N'-hexakis(2-pyridylmethyl)-1,3,5-tris-(aminomethyl)benzene) have been synthesized and characterized. The crystal structures of compounds 2 and 3 showed each Cu(BPA) motif had a 4+1 square-pyramidal coordination environment with one chloride occupying the apical position and three N atoms from the same BPA moiety together with another Cl atom forming the basal plane. Fluorescence and circular dichroism (CD) spectroscopy studies indicated that the DNA binding followed an order of 3>2>1 in the compounds. These complexes cleave plasmid pUC19 DNA by using an oxidative mechanism with mercaptopropionic acid (MPA) as the reductant under aerobic conditions. Dinuclear Cu2+ complexes 1 and 2 showed much higher cleavage efficiency than their mononuclear analogue [Cu(bpa)Cl2] at the same [Cu2+] concentration, suggesting a synergistic effect of the Cu2+ centers. Moreover, the meta-dicopper centers in complex 1 facilitated the formation of linear DNA. Interestingly, the additional copper center to the meta-dicopper motif in complex 3 decreased the cleavage efficacy of meta-dicopper motif in complex 1, although it is able to cleave DNA to the linear form at higher [Cu2+] concentrations. Therefore, the higher DNA binding ability of complex 3 did not lead to higher cleavage efficiency. These findings have been correlated to the DNA binding mode and the ability of the Cu2+ complexes to activate oxygen (O2). This work is a good example of the rational design of multinuclear Cu2+ artificial nuclease and the activity of which can be manipulated by the geometry and the number of metal centers.  相似文献   

7.
The reactions of bicarbonate ion with a series of binuclear Cu(II) complexes in buffered aqueous solution have been studied, and effective binding constants for bicarbonate have been determined at pH 7.4 for the complexes [Cu2(taec)]4+ (taec = N,N',N',N'-tetrakis(2-aminoethyl)-1,4,8,11-tetraazacyclotetradecane) and [Cu2(tpmc)(OH)]3+ (tpmc = N, N',N',N'-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane). [Cu2(o-xyl-DMC2)]4+ (o-xyl-DMC2 = alpha,alpha'-bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecan-6-yl)-o-xylene) did not react with bicarbonate ion in an aqueous solution buffered at this pH. The complexes were reduced by controlled-potential electrolysis, and the stability of the Cu(I) derivatives in aqueous solution and their affinity for bicarbonate/carbonate ion were investigated. On the basis of these fundamental studies, [Cu2(tpmc)(mu-OH)]3+ has been identified as an air-stable, water-soluble carrier for the capture and concentration of CO2 by electrochemically modulated complexation. The carrier binds to the carbonate ion strongly in its oxidized, Cu(II) form and releases the ion rapidly when reduced to the Cu(I) complex. In small-scale electrochemical pumping experiments designed to demonstrate the feasibility of this approach, CO2 has been pumped from an initial 10% CO2/N2 mixture up to a final concentration of 75%.  相似文献   

8.
Substitution reactions of the complexes [Pt(terpy)(H(2)O)](2+), [Pt(terpy)(cyst-S)](2+) and [Pt(terpy)(guo-N(7))](2+), where terpy = 2,2':6',2"-terpyridine, cyst = L-cysteine and guo = guanosine, with some biologically relevant ligands such as inosine (INO), inosine-5'-monophosphate (5'-IMP), guanosine-5'-monophosphate (5'-GMP), l-cysteine, glutathione, thiourea, thiosulfate and diethyldithiocarbamate (DEDTC), were studied in aqueous 0.10 M NaClO(4) at pH 2.5 and 6.0 using variable-temperature and -pressure stopped-flow spectrophotometry. The reactions of [Pt(terpy)(H(2)O)](2+) with INO, 5'-IMP and 5'-GMP showed that these ligands are very good nucleophiles. The second order rate constants varied between 4 x 10(2) and 6 x 10(2) M(-1) s(-1) at 25 degree C. The [Pt(terpy)(cyst-S)](2+) complex is unreactive towards nitrogen donor nucleophiles, and cysteine cannot be replaced by N(7) from INO, 5'-IMP and 5'-GMP. However, sulfur donor nucleophiles such as thiourea, thiosulfate and diethyldithiocarbamate could displace the Pt-cysteine bond. Diethyldithiocarbamate is the best nucleophile and the order of reactivity is: thiourea < thiosulfate < DEDTC with rate constants of 0.936 +/- 0.002, 5.99 +/- 0.02 and 8.88 +/- 0.07 M(-1) s(-1) at 25 degree C, respectively. The reactions of [Pt(terpy)(guo-N(7))](2+) with sulfur donor ligands showed that these nucleophiles could substitute guanosine from the Pt(ii) complex, of which diethyldithiocarbamate and thiosulfate are the strongest nucleophiles. The tripeptide glutathione is also a very efficient nucleophile. Activation parameters (Delta H(++), Delta S(++) and Delta V(++)) were determined for all reactions. The crystal structures of [Pt(terpy)(cyst-S)](ClO(4))(2).0.5H(2)O and [Pt(terpy)(guo-N(7))](ClO(4))(2).0.5guo.1.5H(2)O were determined by X-ray diffraction. Crystals of [Pt(terpy)(cyst-S)](ClO(4))(2).0.5H(2)O are orthorhombic with the space group P2(1)2(1)2(1), whereas [Pt(terpy)(guo-N(7))](ClO(4))(2).0.5guo.1.5H(2)O crystallizes in the orthorhombic space group P2(1)2(1)2. A typical feature of terpyridine complexes can be found in both molecular structures: the Pt-N (central) bond distance, 1.982(7) and 1.92(2) A, respectively, is shorter than the other two Pt-N distances, being 2.043(7) and 2.034(7) A in [Pt(terpy)(cyst-S)](ClO(4))(2).0.5H(2)O and 2.03(2) and 2.04(2) A in [Pt(terpy)(guo-N(7))](ClO(4))(2).0.5guo.1.5H(2)O, respectively. In both crystal structures two symmetrically independent cations representing different conformers are present in the asymmetric unit. The results are analysed in reference to the antitumour activity of Pt(II) complexes, and the importance of the rescue agents are discussed.  相似文献   

9.
The novel dinuclear Pt(II) complexes [{trans-Pt(NH(3))(2)Cl}(2)(μ-pyrazine)](ClO(4))(2) (Pt1), [{trans-Pt(NH(3))(2)Cl}(2)(μ-4,4'-bipyridyl)](ClO(4))(2)·DMF (Pt2), and [{trans-Pt(NH(3))(2)Cl}(2)(μ-1,2-bis(4-pyridyl)ethane)](ClO(4))(2) (Pt3), were synthesized. Acid-base titrations, and temperature and concentration dependent kinetic measurements of the reactions with biologically relevant ligands such as thiourea (Tu), glutathione (GSH) and guanosine-5'-monophosphate (5'-GMP) were studied at pH 2.5 and 7.2. The reactions were followed under pseudo-first-order conditions by stopped-flow and UV-vis spectrophotometry. (1)H NMR spectroscopy was used to follow the substitution of chloride in the complex [{trans-Pt(NH(3))(2)Cl}(2)(μ-4,4'-bipyridyl)](ClO(4))(2)·DMF by guanosine-5'-monophosphate (5'-GMP) under second-order conditions. The results indicate that the bridging ligand has an influence on the reactivity of the complexes towards nucleophiles. The order of reactivity of the investigated complexes is Pt1 > Pt2 > Pt3.  相似文献   

10.
The substitution of aqua ligands of mononuclear Pt(II) complexes of the general form [Pt(H(2)O)(N,N-bis(2-pyridylmethyl)-N(CH(2))(n)-CH(3); -NC(CH(3))(3); -NH](CF(3)SO(3))(2), n = 1 (bpea); 2 (bppa); 3 (bpba); 5 (bpha), 9 (bpda) -NC(CH(3))(3) (bpbta) and -NH (bpma) by thiourea nucleophiles was investigated under pseudo first-order conditions as a function of concentration and temperature using the stopped-flow technique and UV-vis spectroscopy. The substitution reactions occur via two separate reaction steps, each fitting to a single exponential curve. In the two reaction steps, the thiourea nucleophiles first substitute the coordinated aqua ligand followed by ring opening via dechelation of one of the pyridyl units. The mode of activation for both steps remains associative in nature and the observed rate constants can be fitted to the equation k(obs(1st/2nd)) = k(2(1st/2nd))[Nu]. Appending a primary alkyl hydrocarbon group on the trans-N donor atom of the chelate head group marginally increases the rate of substitution of the aqua leaving group due to the weaker trans-influence of its alkyl amine donor group. However, when a tert-butyl group is the pendant group, reactivity increases by a factor of about two, reiterating the inductive nature of the flow of electron density from the tailing groups towards the Pt(II) metal centres. A comparison of the reactivities of the studied complexes with their dinuclear analogues bridged by alkyl diamines has demonstrated that the electronic effect of the alkyl diamine bridge on the overall reactivity of the multinuclear Pt(II) complexes is weak and insignificant when compared to steric effects due to the constraining bridge.  相似文献   

11.
pi-Acceptor effects are often used to account for the unusual high lability of [Pt(terpy)L]((2)(-)(n)+) (terpy = 2,2':6',2' '-terpyridine) complexes. To gain further insight into this phenomenon, the pi-acceptor effect was varied systematically by studying the lability of [Pt(diethylenetriamine)OH(2)](2+) (aaa), [Pt(2,6-bis-aminomethylpyridine)OH(2)](2+) (apa), [Pt(N-(pyridyl-2-methyl)-1,2-diamino-ethane)OH(2)](2+) (aap), [Pt(bis(2-pyridylmethyl)amine)OH(2)](2+) (pap), [Pt(2,2'-bipyridine)(NH(3))(OH(2))](2+) (app), and [Pt(terpy)OH(2)](2+) (ppp). The crystal structure of the apa precursor [Pt(2,6-bis-aminomethylpyridine)Cl]Cl.H(2)O was determined. The substitution of water by a series of nucleophiles, viz. thiourea, N,N-dimethylthiourea, N,N,N',N'-tetramethylthiourea, I(-), and SCN(-), was studied under pseudo-first-order conditions as a function of concentration, pH, temperature, and pressure, using stopped-flow techniques. The data enable an overall comparison of the substitution behavior of these complexes, emphasizing the role played by the kinetic cis and trans pi-acceptor effects. The results indicate that the cis pi-acceptor effect is larger than the trans pi-acceptor effect, and that the pi-acceptor effects are multiplicative. DFT calculations at the B3LYP/LACVP level of theory show that, by the addition of pi-acceptor ligands to the metal, the positive charge on the metal center increases, and the energy separation of the frontier molecular orbitals (E(LUMO) - E(HOMO)) of the ground state Pt(II) complexes decreases. The calculations collectively support the experimentally observed additional increase in reactivity when two pi-accepting rings are adjacent to each other (app and ppp), which is ascribed to "electronic communication" between the pyridine rings. The results furthermore indicate that the pK(a) value of the platinum bound water molecule is controlled by the pi-accepting nature of the chelate system and reflects the electron density around the metal center. This in turn controls the rate of the associative substitution reaction and was analyzed using the Hammett equation.  相似文献   

12.
The substitution kinetics of the complexes [Pt(N-N-C)Cl] (N-N-CH = 6-phenyl-2,2'-bipyridine), [Pt(N-C-N)Cl] (N-CH-N = 1,3-di(2-pyridyl)benzene), and [Pt(N-N-N)Cl]Cl (N-N-N = 2,2':6',2' '-terpyridine) with the nucleophiles Br(-), I(-), and, for the first two complexes, also thiourea, N,N-dimethylthiourea, and N,N,N',N'-tetramethylthiourea, have been studied in methanol as solvent. In case of the thioureas, the activation parameters DeltaH, DeltaS, and DeltaV were also determined from the temperature and pressure dependence of the reactions. Two crystal structures of [Pt(N-N-C)Cl] were determined (yellow and red polymorphs); the intense red color of the latter polymorph results from Pt-Pt interactions (Pt-Pt distance = 3.366 A). The data enable an analysis of the cis and trans effects and the influence of the strong sigma-donor carbon in the presence of an electron withdrawing pi-acceptor ligand backbone. The results indicate that the intrinsic reactivity is enhanced greatly by the labilizing effect of the trans carbon donor, but the nucleophilic discrimination is dramatically reduced due to the decrease in electrophilicity on the metal center. However, although the electron withdrawing pi-acceptor effect is partly counteracted by the sigma-donor effect, the complex still benefits from a higher nucleophilic discrimination than in the comparable Pt(II) trans carbon donor complexes, where no or fewer pi-acceptors are present. In the case of the cis carbon donor complex, the intrinsic reactivity remains unchanged, but the nucleophilic discrimination is reduced and leads to a reduced reactivity of the [Pt(N-N-C)Cl] complex in comparison to [Pt(N-N-N)Cl]Cl. On the basis of these results, a more detailed treatment of the nature of the cis effect is offered.  相似文献   

13.
The nucleophilic substitution reactions of complexes [Pt{4'-(2'-CH(3)-phenyl)-2,2':6',2'-terpyridine}Cl]CF(3)SO(3), [CH(3)PhPtCl], [Pt{4'-(2'-CH(3)-phenyl)-6-(3'-isoquinoyl)-2,2'bipyridine}Cl]SbF(6), [CH(3)PhisoqPtCl], [Pt{2-(2'-pyridyl)-1,10-phenanthroline}Cl]Cl, [pyPhenPtCl], and [Pt(terpyridine)Cl](+), [PtCl] with a series of nucleophiles: thiourea (TU), N,N-dimethylthiourea (DMTU), N,N,N,N-tetramethylthiourea (TMTU), I(-), Br(-), and SCN(-) were studied in 0.1 M LiCF(3)SO(3) in methanol (in the presence of 10 mM LiCl). The reactivity of the investigated complexes follows the order pyPhenPtCl > PtCl > CH(3)PhPtCl > CH(3)PhisoqPtCl. The lability of the chloride ligand is dependent on the strength of π-backbonding properties of the spectator ligands around the platinum centre. The experimental data is strongly supported by DFT calculations. The dependence of the second-order rate constants on concentration of the nucleophiles as well as the large negative values reported for the activation entropy (ΔS(?)) confirmed an associative mechanism of substitution.  相似文献   

14.
The effect of different N-N spectator ligands on the reactivity of platinum(II) complexes was investigated by studying the water lability of [Pt(diaminocyclohexane)(H2O)2]2+ (Pt(dach)), [Pt(ethylenediamine)(H2O)2]2+ (Pt(en)), [Pt(aminomethylpyridine)(H2O)2]2+ (Pt(amp)), and [Pt(N,N'-bipyridine)(H2O)2]2+ (Pt(bpy)). Some of the selected N-N chelates form part of the coordination sphere of Pt(II) drugs in clinical use, as in Pt(dach) (oxaliplatin), or are models, regarding the nature of the amines, with higher stability in terms of substitution and hydrolysis of the diamine moiety, as in Pt(en) (cisplatin) and Pt(amp) (AMD473). The effect of pi-acceptors on the reactivity was investigated by introducing one (Pt(amp)) or two pyridine rings (Pt(bpy)) in the system. The pK(a) values for the two water molecules (viz., Pt(dach) (pK(a1) = 6.01, pK(a2) = 7.69), Pt(en) (pK(a1) = 5.97, pK(a2) = 7.47), Pt(amp) (pK(a1) = 5.82, pK(a2) = 6.83), Pt(bpy) (pK(a1) = 4.80, pK(a2) = 6.32) show a decrease in the order Pt(dach) > Pt(en) > Pt(amp) > Pt(bpy). The substitution of both coordinated water molecules by a series of nucleophiles (viz., thiourea (tu), L-methionine (L-Met), and guanosine-5'-monophosphate (5'GMP-) was investigated under pseudo-first-order conditions as a function of concentration, temperature, and pressure using UV-vis spectrophotometric and stopped-flow techniques and was found to occur in two subsequent reaction steps. The following k1 values for Pt(dach), Pt(en), Pt(amp), and Pt(bpy) were found: tu (25 degrees C, M(-1) s(-1)) 21 +/- 1, 34.0 +/- 0.4, 233 +/- 5, 5081 +/- 275; L-Met (25 degrees C) 0.85 +/- 0.01, 0.70 +/- 0.03, 2.15 +/- 0.05, 21.8 +/- 0.6; 5'GMP- (40 degrees C) 5.8 +/- 0.2, 3.9 +/- 0.1, 12.5 +/- 0.5, 24.4 +/- 0.3. The results for k2 for Pt(dach), Pt(en), Pt(amp), and Pt(bpy) are as follows: tu (25 degrees C, M(-1) s(-1)) 11.5 +/- 0.5, 10.2 +/- 0.2, 38 +/- 1, 1119 +/- 22; L-Met (25 degrees C, s(-1)) 2.5 +/- 0.1, 2.0 +/- 0.2, 1.2 +/- 0.3, 290 +/- 4; 5'GMP- (40 degrees C, M(-1) s(-1)) 0.21 +/- 0.02, 0.38 +/- 0.02, 0.97 +/- 0.02, 24 +/- 1. The activation parameters for all reactions suggest an associative substitution mechanism. The pK(a) values and substitution rates of the complexes studied can be tuned through the nature of the N-N chelate, which is important in the development of new active compounds for cancer therapy.  相似文献   

15.
Treatment of cis-Pt(Me2SO)2Cl2 with DNSH-tren afforded [Pt(DNSH-tren)Cl]Cl and with DNSH-dienH, under increasingly more basic conditions, led to Pt(DNSH-dienH)Cl(2), Pt(DNSH-dien)Cl, and Pt(DNS-dien). (DNSH = 5-(dimethylamino)naphthalene-1-sulfonyl, linked via a sulfonamide group to tris(2-aminoethyl)amine (DNSH-tren) and diethylenetriamine (DNSH-dienH); the H's in DNSH-dienH designate protons sometimes lost upon Pt binding, i.e., sulfonamide NH for the dienH moiety and H8 for the DNSH moiety). Respectively, the three neutral DNSH-dienH-derived complexes are difunctional, monofunctional, and nonfunctional and exhibit decreasing fluorescence in this order as the dansyl group distance to Pt decreases. 2D NMR data establish that Pt(DNS-dien) has a Pt-C8 bond and a Pt-N(sulfonamido) bond. Pt(DNSH-dien)Cl and [Pt(DNSH-tren)Cl]Cl bind to N7 of 6-oxopurines (e.g., 5'-GMP, 3'-IMP, and 9-ethylguanine) and sulfur of methionine (met). Competition and challenge reactions for Pt(II) with met and 5'-GMP typically reveal that met binding is favored kinetically but that 5'-GMP binding is favored thermodynamically. This common type of behavior was found for [Pt(DNSH-tren)Cl]Cl. In contrast, Pt(DNSH-dien)Cl had reduced kinetic selectivity for met. This unusual behavior undoubtedly arises as a consequence of the bound Pt-N(sulfonamido) group, which donates strongly to Pt (as indicated by relatively upfield dien NH signals) and which places the bulky DNSH moiety close to the monofunctional reaction site. The decrease in the relatively upfield shifts of the DNSH group signals indicates that this group stacks with the purine. This stacking could explain the unprecedented, relatively low reactivity of a Pt complex bearing a dien-type ligand toward met vs 5'-GMP.  相似文献   

16.
The green complex S=1 [(TPEN)FeO]2+ [TPEN=N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine] has been obtained by treating the [(TPEN)Fe]2+ precursor with meta-chloroperoxybenzoic acid (m-CPBA). This high-valent complex belongs to the emerging family of synthetic models of Fe(IV)=O intermediates invoked during the catalytic cycle of biological systems. This complex exhibits spectroscopic characteristics that are similar to those of other models reported recently with a similar amine/pyridine environment. Thanks to its relative stability, vibrational data in solution have been obtained by Fourier transform infrared. A comparison of the Fe=O and Fe=(18)O wavenumbers reveals that the Fe-oxo vibration is not a pure one. The ability of the green complex to oxidize small organic molecules has been studied. Mixtures of oxygenated products derived from two- or four-electron oxidations are obtained. The reactivity of this [FeO]2+ complex is then not straightforward, and different mechanisms may be involved.  相似文献   

17.
A series of dinuclear platinumII complexes of the type [{trans‐Pt(H2O)(NH3)2}2‐NH2(CH2)nH2N]4+ (where n = 2, 3, 4, and 6) were synthesized to investigate the influence of the bridging diamine linker on the reactivity of the platinum centers. The pKa values were determined, and the rates of substitution of the aqua moieties by a series of neutral nucleophiles viz. thiourea, 1,3‐dimethyl‐2‐thiourea, and 1,1,3,3‐tetramethyl‐2‐thiourea were studied as a function of concentration and temperature. All reactions studied gave excellent fits to a single exponential and obeyed the simple rate law, kobs=k2[Nu]. Negative activation entropies support an associative mode of substitution. The results obtained suggest that the rate of substitution is definitely influenced by the length of the diamine chain, with the rate of substitution decreasing as the length of the diamine chain increases. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 202–210, 2006  相似文献   

18.
A series of novel dinuclear platinum(II) complexes were synthesized with bidentate nitrogen donor ligands. The two platinum centers are connected by an aliphatic chain of variable length. The selected chelating ligand system should stabilize the complex toward decomposition. The pK(a) values and reactivity of four synthesized complexes, viz. [Pt(2)(N(1),N(4)-bis(2-pyridylmethyl)-1,4-butanediamine)(OH(2))(4)](4+) (4NNpy), [Pt(2)(N(1),N(6)-bis(2-pyridylmethyl)-1,6-hexanediamine)(OH(2))(4)](4+) (6NNpy), [Pt(2)(N(1),N(8)-bis(2-pyridylmethyl)-1,8-octanediamine)(OH(2))(4)](4+) (8NNpy), and [Pt(2)(N(1),N(10)-bis(2-pyridylmethyl)-1,10-decanediamine)(OH(2))(4)](4+) (10NNpy), were investigated. This system is of special interest because only little is known about the substitution behavior of dinuclear platinum complexes that contain a bidentate chelate that forms part of the aliphatic bridging ligand. Spectrophotometric acid-base titrations were performed to determine the pK(a) values of the coordinated water ligands. The substitution of coordinated water by thiourea was studied under pseudofirst-order conditions as a function of nucleophile concentration, temperature, and pressure, using stopped-flow techniques and UV-vis spectroscopy. The results for the dinuclear complexes were compared to those for the corresponding mononuclear reference complex [Pt(aminomethylpyridine)(OH(2))(2)](2+) (monoNNpy), by which the effect of increasing the aliphatic chain length on the bridged complexes could be investigated. The results indicated that there is a clear interaction between the two platinum centers, which becomes weaker as the chain length between the metal centers increases. In addition, quantum chemical calculations were performed to support the interpretation and discussion of the experimental data.  相似文献   

19.
Interaction of cis-[Pt(NH3)2Cl2] (cisplatin) with 5'-guanosine monophosphate (5'-GMP) has been investigated for the first time by on-line coupling of high performance ion chromatography (HPIC) to inductively coupled plasma sector field mass spectrometry (ICP-SFMS). The time-dependent reaction course of the cisplatin-5'-GMP system was followed after incubation under simulated physiological conditions by monitoring the decrease in the concentration of 5'-GMP and the increase in the concentration of formed adducts, on the basis of speciation analysis. Because of the two-step mechanism an intermediate mono adduct was observed together with the major product, the bis adduct cis-[Pt(NH3)2(GMP)2]2-. The data obtained correlated well with those from earlier studies employing orthogonal techniques such as capillary electrophoresis (CE). Furthermore, HPIC-ICP-SFMS provided unambiguous stoichiometric information about the major GMP-adduct. For this purpose the platinum-to-phosphorus ratio was determined by simultaneously measuring 31P and 195Pt. To separate significant interferences from 15N16O+, 14N16O1H+, 12C18O1H+, and 13C17O1H+ on 31P, high-mass resolution (m/deltam = 4,500) proved to be mandatory. The P/Pt signal ratio of 2/1 obtained corresponds to the molar ratio in the bis adduct cis-[Pt(NH3)2(GMP)2]2-.  相似文献   

20.
The iron(III) complexes [Fe(2)(HPTB)(mu-OH)(NO(3))(2)](NO(3))(2).CH(3)OH.2H(2)O (1), [Fe(2)(HPTB)(mu-OCH(3))(NO(3))(2)](NO(3))(2).4.5CH(3)OH (2), [Fe(2)(HPTB)(mu-OH)(OBz)(2)](ClO(4))(2).4.5H(2)O (3), [Fe(2)(N-EtOH-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3CH(3)OH.1.5H(2)O (4), [Fe(2)(5,6-Me(2)-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3.5CH(3)OH.C(2)H(5)OC(2)H(5).0.5H(2)O (5), and [Fe(4)(HPTB)(2)(mu-F)(2)(OH)(4)](ClO(4))(4).CH(3)CN.C(2)H(5)OC(2)H(5).H(2)O (6) were synthesized (HPTB = N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, N-EtOH-HPTB = N,N,N',N'-tetrakis(N' '-(2-hydroxoethyl)-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, 5,6-Me(2)-HPTB = N,N,N',N'-tetrakis(5,6-dimethyl-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane). The molecular structures of 2-6 were established by single-crystal X-ray crystallography. Iron(II) complexes with ligands similar to the dinucleating ligands described herein have been used previously as model compounds for the dioxygen uptake at the active sites of non-heme iron enzymes. The same metastable (mu-peroxo)diiron(III) adducts were observed during these studies. They can be prepared by adding hydrogen peroxide to the iron(III) compounds 1-6. Using stopped-flow techniques these reactions were kinetically investigated in different solvents and a mechanism was postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号