首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bis(isonitrile) iron(II) complexes bearing a C2‐symmetric diamino (NH)2P2 macrocyclic ligand efficiently catalyze the hydrogenation of polar bonds of a broad scope of substrates (ketones, enones, and imines) in high yield (up to 99.5 %), excellent enantioselectivity (up to 99 % ee), and with low catalyst loading (generally 0.1 mol %). The catalyst can be easily tuned by modifying the substituents of the isonitrile ligand.  相似文献   

2.
New chiral phosphite-type ligands were synthesized. The tests of these ligands in the asymmetric Rh-catalyzed hydrogenation of N-acetyl derivatives of dehydro-??-amino acid esters showed their high enantioselectivity (up to 75% ee). The reaction of nucleophilic addition of phthalimide to disubstituted alkynes offering access to esters of N-phthaloyldehydro-??-amino acids was discovered. Higher conversion and enantioselectivity in the hydrogenation of N-acetyl and N-phtaloyl derivatives of dehydro-??-amino acids were observed in fluorinated alcohols as compared to common organic solvents.  相似文献   

3.
Chiral binuclear gold(I) phosphine complexes catalyze enantioselective intermolecular hydroarylation of allenes with indoles in high product yields (up to 90 %) and with moderate enantioselectivities (up to 63 % ee). Among the gold(I) complexes examined, better ee values were obtained with binuclear gold(I) complexes, which displayed intramolecular AuI AuI interactions. The binuclear gold(I) complex 4c [(AuCl)2( L3 )] with chiral biaryl phosphine ligand (S)‐(−)‐MeO‐biphep ( L3 ) is the most efficient catalyst and gives the best ee value of up to 63 %. Substituents on the allene reactants have a slight effect on the enantioselectivity of the reaction. Electron‐withdrawing groups on the indole substrates decrease the enantioselectivity of the reaction. The relative reaction rates of the hydroarylation of 4‐X‐substituted 1,3‐diarylallenes with N‐methylindole in the presence of catalyst 4c [(AuCl)2( L3 )] / AgOTf [ L3 =(S)‐(−)‐MeO‐biphep], determined through competition experiments, correlate (r2=0.996) with the substituent constants σ. The slope value is −2.30, revealing both the build‐up of positive charge at the allene and electrophilic nature of the reactive AuI species. Two plausible reaction pathways were investigated by density functional theory calculations, one pathway involving intermolecular nucleophilic addition of free indole to aurated allene intermediate and another pathway involving intramolecular nucleophilic addition of aurated indole to allene via diaurated intermediate E2 . Calculated results revealed that the reaction likely proceeds via the first pathway with a lower activation energy. The role of AuI AuI interactions in affecting the enantioselectivity is discussed.  相似文献   

4.
Asymmetric hydrogenation of N-alkyl and N-aryl ketimines catalyzed by chiral cationic η6-arene-(N-monosulfonylated diamine) Ru(II) complexes has been investigated. Strong counteranion and solvent effects on the enantioselectivity were observed. The ruthenium catalyst bearing non-coordinating BArF? anion was found to be particularly effective for the hydrogenation of acyclic and exocyclic N-alkyl ketimines in the presence of (Boc)2O in dichloromethane or even under solvent-free conditions, providing chiral amines with up to >99% ee and full conversions. Alternatively, the ruthenium catalyst bearing achiral phosphate anion together with corresponding phosphoric acid as the additive was also efficient for the hydrogenation of N-alkyl ketimines in the absence of (Boc)2O with excellent enantioselectivities and full conversions. For N-aryl ketimines lower enantiomeric excesses were observed by using the ruthenium catalyst bearing BArF? anion. This catalytic protocol thus provides a facile and practical access to optically active amines and has been successfully employed in the gram-scale synthesis of enantiomerically pure (+)-sertraline.  相似文献   

5.
The sequential reaction of chlorosulfonyl isocyanate with t-BuOH, t-BuNH2 and TFA allows formation of H2NSO2NHBut. Condensation of the latter with Ar1CHO in the presence of Ti(OEt)4 provides the activated imines Ar1CHNSO2NHBut (59–89%). Commercially available boronic acids add to these imines with good stereoselectivity (76–98% ee) using readily available diene ligands. Simple deprotection with 5% w/w water in pyridine affords free Ar1CHNH2Ar2.  相似文献   

6.
Herein we report the use of polyether binders as regulation agents (RAs) to enhance the enantioselectivity of rhodium‐catalyzed transformations. For reactions of diverse substrates mediated by rhodium complexes of the α,ω‐bisphosphite‐polyether ligands 1 – 5 , a – d , the enantiomeric excess (ee) of hydroformylations was increased by up to 82 % (substrate: vinyl benzoate, 96 % ee), and the ee value of hydrogenations was increased by up to 5 % (substrate: N‐(1‐(naphthalene‐1‐yl)vinyl)acetamide, 78 % ee). The ligand design enabled the regulation of enantioselectivity by generation of an array of catalysts that simultaneously preserve the advantages of a privileged structure in asymmetric catalysis and offer geometrically close catalytic sites. The highest enantioselectivities in the hydroformylation of vinyl acetate with ligand 4 b were achieved by using the Rb[B(3,5‐(CF3)2C6H3)4] (RbBArF) as the RA. The enantioselective hydrogenation of the substrates 10 required the rhodium catalysts derived from bisphosphites 3 a or 4 a , either alone or in combination with different RAs (sodium, cesium, or (R,R)‐bis(1‐phenylethyl)ammonium salts). This design approach was supported by results from computational studies.  相似文献   

7.
Asymmetric hydrogenation of imines leads directly to chiral amines, one of the most important structural units in chemical products, from pharmaceuticals to materials. However, highly effective catalysts are rare. This article reveals that combining an achiral pentamethylcyclopentadienyl (Cp*)–iridium complex with a chiral phosphoric acid affords a catalyst that allows for highly enantioselective hydrogenation of imines derived from aryl ketones, as well as those derived from aliphatic ones, with ee values varying from 81 to 98 %. A range of achiral iridium complexes containing diamine ligands were examined, for which the ligands were shown to have a profound effect on the reaction rate, enantioselectivity and catalyst deactivation. The chiral phosphoric acid is no less important, inducing enantioselection in the hydrogenation. The induction occurs, however, at the expense of the reaction rate.  相似文献   

8.
Well‐designed, self‐assembled, metal–organic frameworks were constructed by simple mixing of multitopic MonoPhos‐based ligands ( 3 ; MonoPhos=chiral, monodentate phosphoramidites based on the 1,1′‐bi‐2‐naphthol platform) and [Rh(cod)2]BF4 (cod=cycloocta‐1,5‐diene). This self‐supporting strategy allowed for simple and efficient catalyst immobilization without the use of extra added support, giving well‐characterized, insoluble (in toluene) polymeric materials ( 4 ). The resulting self‐supported catalysts ( 4 ) showed outstanding catalytic performance for the asymmetric hydrogenation of a number of α‐dehydroamino acids ( 5 ) and 2‐aryl enamides ( 7 ) with enantiomeric excess (ee) ranges of 94–98 % and 90–98 %, respectively. The linker moiety in 4 influenced the reactivity significantly, albeit with slight impact on the enantioselectivity. Acquisition of reaction profiles under steady‐state conditions showed 4 h and 4 i to have the highest reactivity (turnover frequency (TOF)=95 and 97 h?1 at 2 atm, respectively), whereas appropriate substrate/catalyst matching was needed for optimum chiral induction. The former was recycled 10 times without loss in ee (95–96 %), although a drop in TOF of approximately 20 % per cycle was observed. The estimation of effective catalytic sites in self‐supported catalyst 4 e was also carried out by isolation and hydrogenation of catalyst–substrate complex, showing about 37 % of the RhI centers in the self‐supported catalyst 4 e are accessible to substrate 5 c in the catalysis. A continuous flow reaction system using an activated C/ 4 h mixture as stationary‐phase catalyst for the asymmetric hydrogenation of 5 b was developed and run continuously for a total of 144 h with >99 % conversion and 96–97 % enantioselectivity. The total Rh leaching in the product solution is 1.7 % of that in original catalyst 4 h .  相似文献   

9.
Chiral phosphine-phosphites provide an alternative class of ligands for the iridium catalyzed enantioselective hydrogenation of imines. Optimization of ligand structure has afforded enantioselectivities up to 84% ee in the reduction of N-aryl imines. A significant influence of backbone nature on enantioselectivity has also been observed.  相似文献   

10.
Arene/Ru(II) complexes of (R,R)-N-alkyl-TsDPEN ligands are effective in the asymmetric transfer hydrogenation of ketones and imines in formic acid/triethylamine solution. The complex derived from the N′-Bn derivative of TsDPEN reduces monocyclic imines in up to 60% ee, whilst the N′-Me derivative of TsDPEN forms a more active catalyst than the non-alkylated analogue and reduces ketones in up to 97% ee.  相似文献   

11.
Diels–Alder and 1,3‐dipolar cycloadditions involving (E)‐3‐aryl‐1‐(pyridin‐2‐yl‐N‐oxide)prop‐2‐en‐1‐ones as the 2π components are efficiently catalysed by bis(oxazoline)–CuII complexes. The cycloadducts are obtained in quantitative yields with up to 98 % ee; absolute configurations were determined by X‐ray analysis. The structure of the reactive complex, determined by X‐ray analysis, is fully consistent with the stereochemical outcome of the catalysed process (approach of the diene or nitrone to the less hindered face of the coordinated pyridine‐N‐oxide derivative).  相似文献   

12.
The asymmetric reduction of N‐aryl imines derived from acetophenones by using Ru complexes bearing both a pybox (2,6‐bis(oxazoline)pyridine) and a monodentate phosphite ligand has been described. The catalysts show good activity with a diverse range of substrates, and deliver the amine products in very high levels of enantioselectivity (up to 99 %) under both hydrogenation and transfer hydrogenation conditions in isopropanol. From deuteration studies, a very different labeling is observed under hydrogenation and transfer hydrogenation conditions, which demonstrates the different nature of the hydrogen source in both reactions.  相似文献   

13.
Chiral bis(imidazolidine)‐derived NCN–rhodium complexes ([PhBidine‐RhX2] and [tBu‐PhBidine‐RhX2]) were prepared by a C?H insertion method, and the structures were unequivocally determined by X‐ray crystallographic analysis. The [tBu‐PhBidine‐Rh(OAc)2] complex smoothly catalyzed an asymmetric Mannich reaction of malononitrile with N‐Boc imines to give products in up to 94 % ee, which are useful for the synthesis of chiral α‐amino acids.  相似文献   

14.
A series of 1,1′-spirobiindane-7,7′-diol ( SPINOL ) analogues bearing a 2,2′-dimethyl-, cyclopentyl-, or cyclohexyl-fused ring were synthesized, and their distinct structural features were elucidated by X-ray crystallography. On the basis of these scaffolds, chiral monophosphoramidite ligands 6 a – m were synthesized, which demonstrated excellent enantioselectivity in RhI-catalyzed asymmetric hydrogenation of a dehydro amino acid methyl ester. Ligands 6 a – m were also successfully applied in the RhI-catalyzed enantioselective [4+2] cycloaddition of α,β-unsaturated imines with isocyanates, which afforded the corresponding pyrimidinones in good yields (60–92 %) with high enantioselectivities (75–92 % ee).  相似文献   

15.
This article details the enantioselective catalytic performance of crosslinked, polymer immobilized, Ir‐based, chiral complexes for transfer hydrogenation of cyclic imines to chiral amines. Polymerization of the achiral vinyl monomer, divinylbenzene, and a polymerizable chiral 1,2‐diamine monosulfonamide ligand followed by complexation with [IrCl2Cp*]2 affords the crosslinked polymeric chiral complex, which can be successfully applied to asymmetric transfer hydrogenation of cyclic imines. Polymeric catalysts prepared from amphiphilic achiral monomers have high catalytic activity in the reaction and can be used both in organic solvents and water to give chiral cyclic amines with a high level of enantioselectivity (up to 98% ee). The asymmetric reaction allows for reuse of the heterogeneous catalyst without any loss in activity or enantioselectivity over several runs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3037–3044  相似文献   

16.
《中国化学》2018,36(2):139-142
An efficient dual stereocontrol in iridium‐catalyzed hydrogenation of 1‐substituted 3,4‐dihydroisoquinolines was realized by tuning the amount of N‐bromosuccinimide using chiral ligand of single configuration, providing both enantiomers of 1‐substituted 1,2,3,4‐tetrahydroisoquinolines with up to 89% ee (S) and 98% ee (R), respectively. Dual activation role of N‐bromosuccinimide is proposed to be responsible for the reversal of enantioselectivity under two hydrogenation conditions.  相似文献   

17.
《Tetrahedron: Asymmetry》2003,14(24):3819-3821
A series of copper complexes of chiral bisoxazolines has been applied in the catalytic diethylzinc addition to N-sulfonyl imines. It has been found that the tridentate ligands 35 provided higher enantioselectivity than bidentate ones. Addition of 4 Å molecular sieves to the reaction system benefits the enantioselectivity. The optimal procedure for diethylzinc addition to different imines resulted in moderate yields and enantioselectivities of up to 82% ee.  相似文献   

18.
The direct aldol reaction between a protected dihydroxyacetone derivative and 4-nitrobenzaldehyde catalyzed by chiral Zn2+ complexes of 1-(n-carboxylalkyl)-7-aminoacyl-1,4,7,10-tetraazacyclododecane is reported. New Zn2+ complexes containing l-histidine and carboxylalkyl chains that mimic a class II aldolase, carboxypeptidase A and a serine protease were designed and synthesized. Syn-aldol products were mainly formed by an aldol reaction of acetonide-protected dihydroxyacetone with benzaldehydes and other benzaldehydes in N-methylpyrrolidone (NMP)/alcohol (MeOH, EtOH or 2-PrOH) in good yields with a high degree of diastereo- and enantioselectivity (56%~quant., 57~>99% ee). Mechanistic aspect based on ESI-HRMS, elemental analysis and pH titrations of model ligands is also discussed.  相似文献   

19.
《Tetrahedron: Asymmetry》2007,18(16):1893-1898
A series of homochiral [5]ferrocenophane based N/P, N/S, N/Se, Se/P and P/P ligands was prepared from (R)-N,N-dimethylamino[5]ferrocenophane. These ligands were tested in the Rh-catalyzed hydrogenation of dimethyl itaconate and in Cu-catalyzed Michael addition of Et2Zn to cyclohex-2-enone. The best results in terms of conversion and enantioselectivity in the Rh-catalyzed hydrogenation provided bis(diphenylphosphine) ligand 2h (100% conversion and 95% ee) and aminophosphine 2a in the Cu-catalyzed conjugate addition (100% conversion 84% ee). The enantioselectivity of the Rh-catalyzed hydrogenation of methyl 2-acetamidoacrylate was lower (41% ee).  相似文献   

20.
The syntheses of [Rh(diol)(formamidine)]2 complexes (diol  cycloocta-1,5-diene (1); diol  norbornadiene (2); formamidine  N,N′-di-p-tolylformamidine) are reported. These complexes are dimeric and contain the bridging formamidino ligand. They react with CO, dppe and PPh3 with displacement of the diene ligand to yield the known [Rh(CO)2(formamidine)]2, [Rh(dppe)2]+ and [Rh(PPh3)2(formamidine)], respectively; the last complex, in which the formamidine acts as a chelating ligand, was isolated only as the O2 adduct. With HCl or HBF4 aqueous 1 and 2 do not form hydrides but instead the formamidino cation [p-tolyl-NHCHNHtolyl-p]+ and the complexes [Rh(diol)X]2 (X  Cl, F); a possible scheme for the reaction with HCl is proposed. The [Rh(C8H12)(formamidine)]2 complex reacts with heterocumulenes as CS2, SO2, PhNCS and PhNCO with diene displacement; the only product isolated was [Rh(CS2)2(formamidine], to which a polymeric structure is assigned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号