首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
An EPR (electron paramagnetic resonance) and ENDOR (electron-nuclear double resonance) study of 9-ethylguanine crystals X-irradiated at 10 K detected evidence for three radical forms. Radical R1, characterized by three proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the guanine unit. R1, which evidently formed by protonation of the primary electron addition product, exhibited an unusually distorted structure leading to net positive isotropic components of the alpha-coupling to the hydrogen attached to C8 of the guanine unit. Radical R2, characterized by two nitrogen and three proton hyperfine couplings, was identified as the primary electron loss product, *G+. Distinguishing between *G+ and its N1-deprotonated product is difficult because their couplings are so similar, and density functional theory (DFT) calculations were indispensable for doing so. The results for R2 provide the most complete ENDOR characterization of *G+ presented so far. Radical R3 exhibited a narrow EPR pattern but could not be identified. The identification of radicals R1 and R2 was supported by DFT calculations using the B3LYP/6-311+G(2df,p)//6-31+G(d,p) approach. Radical R4, detected after irradiation of the crystals at room temperature, was identified as the well-known product of net hydrogenation at C8 of the guanine component. Spectra from the room temperature irradiation contained evidence for R5, an additional radical that could not be identified. Radical concentrations from the low temperature irradiation were estimated as follows: R1, 20%; R2, 65%; R3, 15%.  相似文献   

2.
X-irradiated single crystals of sodium inosine (Na(+)*Inosine(-)*2.5H(2)O), in which the hypoxanthine base is present as the N1-deprotonated anion, were investigated using K-band (24 GHz) electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and ENDOR induced EPR (EIE) techniques at 10 K. At least five different radicals were present immediately after irradiation at 10 K. R1, which decayed upon warming the crystals to 50 K, was identified as the electron-loss product of the parent N1-deprotonated hypoxanthine base. Hyperfine couplings to HC8 and HC2 were fully characterized with ENDOR spectroscopy, and the identification was supported by DFT calculations. R2, which also decayed on warming to 50 K, exhibited nearly equal couplings to HC2 and HC8. Taken in combination with an extensive set of DFT calculations, the experimental results indicate that R2 is the (doubly negative) product of electron-gain by the initially anionic N1-deprotonated hypoxanthine parent. R3, which exhibited hyperfine coupling only to HC8 could not be identified. R4, which persisted on annealing to 260 K, exhibited one large alpha-proton hyperfine coupling which was fully characterized by ENDOR. Based on DFT calculations and the experimental data, R4 was identified as the product of net H-abstraction from C5'. The remaining HC5' was the source of the measured alpha-proton coupling. R5, present at low temperature and the only observable radical after warming the crystals to room temperature, was identified as the C8-H addition radical. The alpha-coupling to HC2 and beta-couplings to the pair of C8 methlyene protons were fully characterized by ENDOR.  相似文献   

3.
Doping the well‐known metal–organic framework MIL‐53(Al) with vanadium(IV) ions leads to significant changes in the breathing behaviour and might have repercussions on the catalytic behaviour as well. To understand the properties of such a doped framework, it is necessary to determine where dopant ions are actually incorporated. Electron paramagnetic resonance (EPR) and electron–nuclear double resonance (ENDOR) are applied to reveal the nearest environment of the paramagnetic vanadium(IV) dopant ions. EPR spectra of as‐synthesised vanadium‐doped MIL‐53 are recorded at S‐, X‐, Q‐ and W‐band microwave frequencies. The EPR spectra suggest that at low dopant concentrations (1.0–2.6 mol %) the vanadium(IV) ions are well dispersed in the matrix. Varying the vanadium dopant concentration within this range or the dopant salt leads to the same dominant EPR component. In the ENDOR spectra, hyperfine (HF) interactions with 1H, 27Al and 51V nuclei are observed. The HF parameters extracted from simulations strongly suggest that the vanadium(IV) ions substitute Al in the framework.  相似文献   

4.
V5+‐doped Ag/AgCl photocatalysts were prepared via the ion exchange method. The catalysts were characterized using X‐ray diffractometry, transmission electron microscopy, and energy‐dispersive X‐ray, X‐ray photoelectron, Fourier transform infrared and ultraviolet–visible spectroscopies. The V5+‐doped Ag/AgCl photocatalysts show much higher photocatalytic activities than Ag/AgCl under visible light irradiation for methyl orange (MO) decomposition. Especially, the 2.0 wt% V5+‐doped Ag/AgCl photocatalyst shows the highest photocatalytic activity and also high stability after five cycles. The MO degradation rate during each cycle is almost maintained at 97%. Electron spin resonance spectroscopy and radical trapping experiments reveal that holes play an important role in the photocatalytic process.  相似文献   

5.
We present the angular variation of the resonance magnetic fields as well as the angular variation of the linewidths obtained from single-crystal electron paramagnetic resonance spectra of Delta+ [Cr((-)chxn)(3lambda lambda lambda)]3+ (chxn = trans-1,2-cyclohexanediamine) doped into the nitrate salt of the isostructural Rh(III) ion Delta+ [Rh((-)chxn)(3lambda lambda lambda](NO3)3)3.H2O. An analysis of the angular variation of the resonance magnetic fields indicates axial symmetry for the cation. An analysis of the angular variation of the linewidths, on the other hand, reveals that not all the paramagnetic sites have perfect axial symmetry.  相似文献   

6.
The radicals obtained in trehalose dihydrate single crystals after 77 K X-irradiation have been investigated at the same temperature using X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and ENDOR-induced EPR (EIE) techniques. Five proton hyperfine coupling tensors were unambiguously determined from the ENDOR measurements and assigned to three carbon-centered radical species (T1, T1*, and T2) based on the EIE spectra. EPR angular variations revealed the presence of four additional alkoxy radical species (T3 to T6) and allowed determination of their g tensors. Using periodic density functional theory (DFT) calculations, T1/T1*, T2, and T3 were identified as H-loss species centered at C4, C1', and O2', respectively. The T4 radical is proposed to have the unpaired electron at O4, but considerable discrepancies between experimental and calculated HFC values indicate it is not simply the (net) H-loss species. No suitable models were found for T5 and T6. These exhibit a markedly larger g anisotropy than T3 and T4, which were not reproduced by any of our DFT calculations.  相似文献   

7.
Deprotonation of mixtures of the triazene complexes [RhCl(CO)2(p-MeC6H4NNNHC6H4Me-p)] and [PdCl(eta(3)-C3H5)(p-MeC6H4NNNHC6H4Me-p)] or [PdCl2(PPh3)(p-MeC6H4NNNHC6H4Me-p)] with NEt3 gives the structurally characterised heterobinuclear triazenide-bridged species [(OC)2Rh(mu-p-MeC6H4NNNC6H4Me-p)2PdLL'] {LL' = eta(3)-C3H5 1 or Cl(PPh3) 2} which, in the presence of Me3NO, react with [NBu(n)4]I, [NBu(n)4]Br, [PPN]Cl or [NBu(n)4]NCS to give [(OC)XRh(mu-p-MeC6H4NNNC6H4Me-p)2PdCl(PPh3)]- (X = I 3-, Br 4-, Cl 5- or NCS 6-) and [NBu(n)4][(OC)XRh(mu-p-MeC6H4NNNC6H4Me-p)2Pd(eta(3)-C3H5)], (X = I 7- or Br 8-). The allyl complexes 7- and 8- undergo one-electron oxidation to the corresponding unstable neutral complexes 7 and 8 but, in the presence of the appropriate halide, oxidative substitution results in the stable paramagnetic complexes [NBu(n)4][X2Rh(mu-p-MeC6H4NNNC6H4Me-p)2Pd(eta(3)-C3H5)], (X = I 9- or Br 10-). X-Ray structural (9-), DFT and EPR spectroscopic studies are consistent with the unpaired electron of 9- and 10- localised primarily on the Rh(II) centre of the [RhPd]4+ core, which is susceptible to oxygen coordination at low temperature to give Rh(III)-bound superoxide.  相似文献   

8.
Continuous Wave (CW), pulse Electron Paramagnetic Resonance (EPR) and pulse Electron Nuclear Double Resonance (ENDOR) spectroscopies, in conjunction with UV-Vis and Infrared (IR) spectroscopies, are used to investigate the chemical reactivity of tetrahedrally coordinated Ti(3+) ions isomorphously substituted in the framework of AlPO-5 towards NH(3) and O(2). The coordination of ammonia to Ti(3+) centres is followed in detail by complementary vibrational and electron magnetic resonance techniques. In particular HYSCORE spectra allow identifying the coordination of two ammonia molecules to Ti(3+) centres resolving the full hyperfine and quadrupole (14)N coupling tensors. The reactivity of the reduced TiAlPO sample towards molecular oxygen is detailed by means of CW-EPR and pulse ENDOR spectroscopy. (17)O(2) is employed, allowing to establish the formation of a "side-on" η(2) O(2)(-)-Ti(4+) electrostatic complex. Pulse ENDOR spectra provide detailed information on the local environment of the formed superoxide radical anion which acts as a paramagnetic probe, providing evidence for Ti-O-Ti oligomeric species.  相似文献   

9.
Single crystals of the 1:1 complex of the nucleic acid base cytosine and the dipeptide N-formylglycine (C.NFG) have been irradiated at 10 and 273 K to doses of about 70 kGy and studied at temperatures between 10 and 293 K using 24 GHz (K-band) and 9.5 GHz (X-band) electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and ENDOR-induced EPR (EIE) spectroscopy. In this complex, the cytosine base is hydrogen bonded at positions N3 and N4 to the carboxylic group of the dipeptide, and the N3 position of cytosine has become protonated by the carboxylic group. At 10 K, two major radicals were characterized and identified. One of these (R1) is ascribed to the decarboxylated N-formylglycine one-electron oxidized species. The other (R2) is the N3-protonated cytosine one-electron reduced species. A third minority species (R3) appears to be a different conformation or protonation state of the one-electron reduced cytosine radical. Upon warming, the R2 and R3 radicals decay at about 100 K, and at 295 K, the only cytosine-centered radicals present are the C5 and C6 H-addition radicals (R5, R6). The R1 radical decays at about 150 K, and a glycine backbone radical (R4) grows in slowly. Thus, in the complex, a complete separation of initial oxidation and reduction events occurs, with oxidation localized at the dipeptide moiety, whereas reduction occurs at the nucleic acid base moiety. DFT calculations indicate that this separation is driven by large differences in electron affinities and ionization potentials between the two constituents of the complex. Once the initial oxidation and reduction products are trapped, no further electron transfer between the two constituents of the complex takes place.  相似文献   

10.
To characterise electron-trapping sites on the surface of MgO nanoparticles, surface colour centres were generated using UV light in conjunction with selected hydrogen-based electron sources. Four different colour-centre species, including the characteristic (e-)(H+) or F(S)+(H) centre, were identified due to the distinct shape of the respective electron paramagnetic resonance (EPR) signals. The analysis of the EPR saturation behaviour down to microwave powers of 5 x 10(-3) mW reveals an enhanced spin-relaxation probability of the (e-)(H+) centre compared to all other F(S)+ centres that do not exhibit significant magnetic interactions with hydroxylic protons. Beside the dipolar magnetic interaction in the (e-)(H+) centre observed by EPR, the electronic interaction between the unpaired electron and the proton of a closely spaced OH group produces a redshift of the OH stretching band by about 70 to 170 cm(-1), as observed by infrared spectroscopy. EPR and IR spectroscopic data obtained after the selective address of individual reaction channels for surface colour-centre formation point to the fact that (e-)(H+) centres are formed by trapping electrons from H atoms. Consequently, the underlying surface defect does not belong to the sites of the MgO surface, which chemisorb hydrogen via a heterolytic splitting process.  相似文献   

11.
The tetraaquabis(methylisonicotinate)zinc(II) disaccharinate [hereafter, [Zn(mein)2(H2O)4]·(sac)2], complex has been synthesized and characterized by spectroscopic IR, EPR and X-ray diffraction technique. The octahedral Zn(II) ion, which rides on a crystallographic centre of symmetry, is coordinated by two monodentate mein ligands through the ring nitrogen and four aqua ligands to form discrete [Zn(mein)2(H2O)4] unit, which captures two saccharinate ions in up and down positions, each through intermolecular hydrogen bonds. The magnetic environments of Cu2+ doped [Zn(mein)2(H2O)4]·(sac)2 complex have been identified by electron paramagnetic resonance (EPR) technique. EPR spectra of Cu2+ doped [Zn(mein)2(H2O)4]·(sac)2 single crystals have been studied between 113 and 300 K in three mutually perpendicular planes. The calculated results of the Cu2+ doped [Zn(mein)2(H2O)4]·(sac)2 indicate that Cu2+ ion contains two different complexes and each complexes are located in different chemical environments and each environment contains two magnetically inequivalent Cu2+ sites in distinct orientations occupying substitutional positions in the lattice. The vibrational spectra of this compound were discussed in relation to other compounds containing methyl isonicotinate and saccharinate complexes. The assignments of the observed bands were discussed.  相似文献   

12.
The initial steps of an enantioselective Diels-Alder reaction catalyzed by a CuII-bissulfoximine complex were followed by EXAFS (EXAFS=extended X-ray absorption fine structure), EPR (EPR=electron paramagnetic resonance) spectroscopy (CW-EPR, FID-detected EPR, pulse ENDOR, HYSCORE; CW=continuous wave; ENDOR=electron nuclear double resonance; HYSCORE=hyperfine sublevel correlation; FID=free induction decay), and UV-visible spectroscopy. The complexes formed between the parent CuX2 (X=Cl-, Br-, TfO-, SbF6-) salts, the chiral bissulfoximine ligand (S,S)-1, and N-(1-oxoprop-2-en-1-yl)oxazolidin-2-one (2) as the substrate in CH2Cl2 were investigated in frozen and fluid solution. In all cases, penta- or hexacoordinated CuII centers were established. The complexes with counterions indicating high stereoselectivity (TfO- and SbF6-) reveal one unique species in which substrate 2 binds to pseudoequatorial positions (via O atoms), shifting the counterions to axial locations. On the other hand, those lacking stereoselectivity (X=Cl- and Br-) form two species in which the parent halogen anions remain at equatorial positions preventing the formation of geometries compatible with those found for X=TfO- and SbF6-.  相似文献   

13.
Electron paramagnetic resonance (EPR) and optical absorption spectra of Mn2+ ions in different alkali lead tetraborate glasses 90R2B4O7+9.25PbO+0.75MnSO4 (R=Li, Na and K) and 90Li2B4O7+(10-x)PbO+xMnSO4 (x=0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2 mol%) have been studied. The EPR spectrum of all the glass samples exhibit three resonance signals at g=2.0, 3.3 and 4.3. The resonance signal at g=2.0 is attributed to the Mn2+ ions in an environment close to an octahedral symmetry. The resonance signals at g=3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn2+ ions. The effect of temperature (123-433 K) and the composition dependence of EPR signals have been studied for Mn2+ ions in lithium lead tetraborate glasses. It is interesting to observe that the variation of paramagnetic susceptibility (chi) with temperature obeys Curie-Weiss law. From the slope of 1/chi versus T graph, the Curie constant (C) has been evaluated. The zero-field splitting (zfs) parameter D has been calculated for different alkali lead tetraborate glasses from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits three bands. An intense and broad band at lower energy side has been assigned to the spin-allowed (5Eg-->5T2g) transition of Mn3+ ions in an octahedral symmetry. The intense and sharp band and a broad band at higher energy side have been assigned to charge transfer bands. A red shift is observed with increase of alkali ion size. The optical band gap energy (Eopt) decreases, whereas the Urbach energies (DeltaE) increases with increase of Mn content. The theoretical values of optical basicity (Lambdath) of the glasses have also been evaluated.  相似文献   

14.
Both electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies are extremely powerful and versatile methods for the characterisation of paramagnetic systems in biology, chemistry, and physics. However, by comparison to EPR, ENDOR remains a less widely used technique. In this tutorial review the basic principles of continuous wave ENDOR are described. The theory of orientation selective ENDOR, for structure determination in frozen solutions and powders, is then described. A range of examples, illustrating the type of information obtained from the ENDOR spectrum, is finally presented.  相似文献   

15.
In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) studies of crystals X-irradiated at 10 K detected evidence for three radical forms. Radical R1, characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen alpha-couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling, was identified as the primary electron-loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1' of the ribose moiety. The identification of radicals R1-R3 was supported by density functional theory (DFT) calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of one-electron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty.  相似文献   

16.
A variety of surface anion vacancies, or point defects, are created by high‐temperature activation of a series of polycrystalline alkaline earth metal oxides (MgO, CaO and SrO). Subsequent UV irradiation of the activated oxide under a hydrogen atmosphere results in the generation of surface colour centres [FS+(H)], by electron trapping at these anion vacancies. The paramagnetic properties of these colour centres were studied by EPR and ENDOR spectroscopy. 1H ENDOR spectroscopy revealed that a well defined heterogeneity of trapped electron species exists on each oxide surface, as characterized by the different superhyperfine couplings between the trapped electron and the nearby proton of the FS+ (H) centre. On MgO and CaO two dominant FS+ (H) centres were identified (labelled sites I and II) whereas on SrO three FS+ (H) species were found (sites I, II and III). The possible surface sites responsible for electron stabilization are discussed, and include a 3C corner mono‐vacancy, a 4C mono‐vacancy and an anion–cation di‐vacancy. The results indicate that regardless of the oxide used, a common degree of morphological similarities exists on each oxide. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Addition of the new phosphonium carborane salts [HPR(3)][closo-CB(11)H(6)X(6)] (R = (i)Pr, Cy, Cyp; X = H 1a-c, X = Br 2a-c; Cy = C(6)H(11), Cyp = C(5)H(9)) to [Rh(nbd)(mu-OMe)](2) under a H(2) atmosphere gives the complexes Rh(PR(3))H(2)(closo-CB(11)H(12)) 3 (R = (i)Pr 3a, Cy 3b, Cyp 3c) and Rh(PR(3))H(2)(closo-CB(11)H(6)Br(6)) 4 (R = (i)Pr 4a, Cy 4b, Cyp 4c). These complexes have been characterised spectroscopically, and for 4b by single crystal X-ray crystallography. These data show that the {Rh(PR(3))H(2)}(+) fragment is interacting with the lower hemisphere of the [closo-CB(11)H(6)X(6)](-) anion on the NMR timescale, through three Rh-H-B or Rh-Br interactions for complexes 3 and 4 respectively. The metal fragment is fluxional over the lower surface of the cage anion, and mechanisms for this process are discussed. Complexes 3a-c are only stable under an atmosphere of H(2). Removing this, or placing under a vacuum, results in H(2) loss and the formation of the dimer species Rh(2)(PR(3))(2)(closo-CB(11)H(12))(2) 5a (R = (i)Pr), 5b (R = Cy), 5c (R = Cyp). These dimers have been characterised spectroscopically and for 5b by X-ray diffraction. The solid state structure shows a dimer with two closely associated carborane monoanions surrounding a [Rh(2)(PCy(3))(2)](2+) core. One carborane interacts with the metal core through three Rh-H-B bonds, while the other interacts through two Rh-H-B bonds and a direct Rh-B link. The electronic structure of this molecule is best described as having a dative Rh(I) --> Rh(III), d(8)--> d(6), interaction and a formal electron count of 16 and 18 electrons for the two rhodium centres respectively. Addition of H(2) to complexes 5a-c regenerate 3a-c. Addition of alkene (ethene or 1-hexene) to 5a-c or 3a-c results in dehydrogenative borylation, with 1, 2, and 3-B-vinyl substituted cages observed by ESI-MS: [closo-(RHC[double bond, length as m-dash]CH)(x)CB(11)H(12-x)](-)x = 1-3, R = H, C(4)H(9). Addition of H(2) to this mixture converts the B-vinyl groups to B-ethyl; while sequential addition of 4 cycles of ethene (excess) and H(2) to CH(2)Cl(2) solutions of 5a-c results in multiple substitution of the cage (as measured by ESI-MS), with an approximately Gaussian distribution between 3 and 9 substitutions. Compositionally pure material was not obtained. Complexes 4a-c do not lose H(2). Addition of tert-butylethene (tbe) to 4a gives the new complex Rh(P(i)Pr(3))(eta(2)-H(2)C=CH(t)Bu)(closo-CB(11)H(6)Br(6)) 6, characterised spectroscopically and by X-ray diffraction, which show coordination of the alkene ligand and bidentate coordination of the [closo-CB(11)H(6)Br(6)](-) anion. By contrast, addition of tbe to 4b or 4c results in transfer dehydrogenation to give the rhodium complexes Rh{PCy(2)(eta(2)-C(6)H(9))}(closo-CB(11)H(6)Br(6)) 7 and Rh{PCyp(2)(eta(2)-C(5)H(7))}(closo-CB(11)H(6)Br(6)) 9, which contain phosphine-alkene ligands. Complex has been characterised crystallographically.  相似文献   

18.
Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.  相似文献   

19.
Dirhodium amido complexes [(Cp*Rh)2(mu2-NHPh)(mu2-X)] (X = NHPh (2), Cl (3), OMe (4); Cp* = eta5-C5Me5) were prepared by chloride displacement of [Cp*Rh(mu2-Cl)]2 (1) and have been used as precursors to a dirhodium imido species [Cp*Rh(mu2-NPh)RhCp*]. The imido species can be trapped by PMe3 to give the adduct [Cp*Rh(mu2-NPh)Rh(PMe3)Cp*] (5) and undergoes a formal [2 + 2] cycloaddition reaction with unactivated alkynes to give the azametallacycles [Cp*Rh(mu2-eta2:eta3-R1CCR2NPh)RhCp*] (R1 = R2 = Ph (6a), R1 = H, R2 = t-Bu (6b), R1 = H, R2 = p-tol (6c)). Isolation of a relevant unsaturated imido complex [Cp*Rh(mu2-NAr)RhCp*] (7) was achieved by the use of a sterically hindered LiNHAr (Ar = 2,6-diisopropylphenyl) reagent in a metathesis reaction with 1. X-ray structures of 2, 6a, 7 and the terminal isocyanide adduct [Cp*Rh(mu2-NAr)Rh(t-BuNC)Cp*] (8) are reported.  相似文献   

20.
Magnetic nuclei in the proximity of a paramagnetic center can be polarized through electron‐nuclear cross‐polarization and detected in electron‐nuclear double resonance (ENDOR) spectroscopy. This principle is demonstrated in a single‐crystal model sample as well as on a protein, the β2 subunit of E.coli ribonucleotide reductase (RNR), which contains an essential tyrosyl radical. ENDOR is a fundamental technique to detect magnetic nuclei coupled to paramagnetic centers. It is widely employed in biological and materials sciences. Despite its utility, its sensitivity in real samples is about one to two orders of magnitude lower than conventional electron paramagnetic resonance, thus restricting its application potential. Herein, we report the performance of a recently introduced concept to polarize nuclear spins and detect their ENDOR spectrum, which is based on electron‐nuclear cross polarization (eNCP). A single‐crystal study permits us to disentangle eNCP conditions and CP‐ENDOR intensities, providing the experimental foundation in agreement with the theoretical prediction. The CP‐ENDOR performance on a real protein sample is best demonstrated with the spectra of the essential tyrosyl radical in the β2 subunit of E.coli RNR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号