首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Within a nonminimal supersymmetric (SuSy) model, the renormalization of trilinear coupling constants A i(t) for scalar fields and of specific combinations $\mathfrak{M}_i^2 (t)$ of the scalar-particle masses is investigated in the regime of strong Yukawa coupling. The dependence of these parameters on their initial values at the Grand Unification scale disappears as solutions to the renormalization-group equations approach infrared quasifixed points with increasing Y i(0). In the vicinities of quasifixed points for $\tilde \alpha _{GUT} \ll Y_i (0) \ll 1$ , all solutions A i(t) and $\mathfrak{M}_i^2 (t)$ are concentrated near some straight lines or planes in the space of parameters of a soft breakdown of supersymmetry. This behavior of the solutions in question is explained by a sufficiently slow disappearance of the A i(0) and $\mathfrak{M}_i^2 (t)$ dependence of the trilinear coupling constants and combinations of the scalar-particle masses. A method is proposed for deriving equations describing the aforementioned straight lines and planes, and the process of their formation is discussed by considering the example of exact and approximate solutions to the renormalization-group equations within a nonminimal supersymmetric standard model.  相似文献   

3.
We construct a discrete form of Hamilton’s Ricci flow (RF) equations for a d-dimensional piecewise flat simplicial geometry, ${{\mathcal S}}$ . These new algebraic equations are derived using the discrete formulation of Einstein’s theory of general relativity known as Regge calculus. A Regge–Ricci flow (RRF) equation can be associated to each edge, ?, of a simplicial lattice. In defining this equation, we find it convenient to utilize both the simplicial lattice ${{\mathcal S}}$ and its circumcentric dual lattice, ${{\mathcal S}^*}$ . In particular, the RRF equation associated to ? is naturally defined on a d-dimensional hybrid block connecting ? with its (d?1)-dimensional circumcentric dual cell, ? *. We show that this equation is expressed as the proportionality between (1) the simplicial Ricci tensor, Rc ? , associated with the edge ${\ell\in{\mathcal S}}$ , and (2) a certain volume weighted average of the fractional rate of change of the edges, ${\lambda\in \ell^*}$ , of the circumcentric dual lattice, ${{\mathcal S}^*}$ , that are in the dual of ?. The inherent orthogonality between elements of ${\mathcal S}$ and their duals in ${{\mathcal S}^*}$ provide a simple geometric representation of Hamilton’s RF equations. In this paper we utilize the well established theories of Regge calculus, or equivalently discrete exterior calculus, to construct these equations. We solve these equations for a few illustrative examples.  相似文献   

4.
The average of the moments for event shapes in e ?+? e??→hadrons within the context of next-to-leading order (NLO) perturbative QCD prediction in dispersive model is studied. Moments used in this article are $\langle {1-T}\rangle$ , $\langle \rho\rangle$ , $\langle {B_{\rm T}}\rangle$ and $\langle {B_{\rm W} }\rangle$ . We extract α s, the coupling constant in perturbative theory and α 0 in the non-perturbative theory using the dispersive model. By fitting the experimental data, the values of $\alpha_{\rm s} ({M_{\rm Z^0} })=0.1171\pm 0.00229$ and $\alpha_0 \left( {\mu_{\rm I} =2\,{\rm GeV}} \right)=0.5068\pm 0.0440$ are found. Our results are consistent with the above model. Our results are also consistent with those obtained from other experiments at different energies. All these features are explained in this paper.  相似文献   

5.
It is shown that $\hat sl(2)_{k_1 } \oplus \hat sl(2)_{k_2 } /\hat sl(2)_{k_1 + k_2 } $ coset theory is a quantum Hamiltonian reduction of the exceptional affine Lie superalgebra $\hat D(2|1;\alpha )$ . In addition, the W algebra of this theory is the commutant of the U q D(2|1;a) quantum group.  相似文献   

6.
In this paper we study the Liouville-type properties for solutions to the steady incompressible Euler equations with forces in ${\mathbb {R}^N}$ . If we assume “single signedness condition” on the force, then we can show that a ${C^1 (\mathbb {R}^N)}$ solution (v, p) with ${|v|^2+ |p| \in L^{\frac{q}{2}}(\mathbb {R}^N),\,q \in (\frac{3N}{N-1}, \infty)}$ is trivial, v = 0. For the solution of the steady Navier–Stokes equations, satisfying ${v(x) \to 0}$ as ${|x| \to \infty}$ , the condition ${\int_{\mathbb {R}^3} |\Delta v|^{\frac{6}{5}} dx < \infty}$ , which is stronger than the important D-condition, ${\int_{\mathbb {R}^3} |\nabla v|^2 dx < \infty}$ , but both having the same scaling property, implies that v = 0. In the appendix we reprove Theorem 1.1 (Chae, Commun Math Phys 273:203–215, 2007), using the self-similar Euler equations directly.  相似文献   

7.
Within the two-flavor approximation, equations that relate the oscillation parameters for both light and heavy neutrinos to the Yukawa coupling constants and the vacuum expectation values of the Higgs fields are derived within the left-right model. The contributions from Higgs bosons to the muon anomalous magnetic moment, to the cross sections for lepton-flavor-violating processes, and to the cross sections for low-energy light-neutrino scattering are studied in order to determine the Yukawa coupling constants. It is shown that the heavy-neutrino masses $m_{N_{1,2} } $ can be expressed in terms of only the triplet Yukawa coupling constants and the mass of the gauge boson W 2. Data on direct and inverse muon decay and constraints on the masses of the $\tilde \delta ^{( - )} , \Delta _{1,2}^{( - - )} $ and W 2 bosons are used to obtain bounds on $m_{N_{1,2} } $ both in the absence of degeneracy and in the presence of mass degeneracy in the sector of heavy neutrinos. Only in the case of degeneracy are data concerning the explanation of the (g ? 2)μ anomaly used to determine bounds on $m_{N_{1,2} } $ .  相似文献   

8.
This paper derives all 36 analytical solutions of the energy eigenvalues for nuclear electric quadrupole interaction Hamiltonian and equivalent rigid asymmetric rotor for polynomial degrees 1 through 4 using classical algebraic theory. By the use of double-parameterization the full general solution sets are illustrated in a compact, symmetric, structural, and usable form that is valid for asymmetry parameter $\eta \in \left({- \infty , + \infty}\right)$ . These results are useful for code developers in the area of Perturbed Angular Correlation (PAC), Nuclear Quadrupole Resonance (NQR) and rotational spectroscopy who want to offer exact solutions whenever possible, rather that resorting to numerical solutions. In addition, by using standard linear algebra methods, the characteristic equations of all integer and half-integer spins I from 0 to 15, inclusive are represented in a compact and naturally parameterized form that illustrates structure and symmetries. This extends Nielson’s?[1] listing of characteristic equations for integer spins out to I?=?15, inclusive.  相似文献   

9.
Dephasing in open quantum chaotic systems has been investigated in the limit of large system sizes to the Fermi wavelength ratio, LF 〉 1. The weak localization correction g wl to the conductance for a quantum dot coupled to (i) an external closed dot and (ii) a dephasing voltage probe is calculated in the semiclassical approximation. In addition to the universal algebraic suppression g wl ∝ (1 + τD?)?1 with the dwell time τD through the cavity and the dephasing rate τ ? ?1 , we find an exponential suppression of weak localization by a factor of ∝ exp[? $\tilde \tau $ ?], where $\tilde \tau $ is the system-dependent parameter. In the dephasing probe model, $\tilde \tau $ coincides with the Ehrenfest time, $\tilde \tau $ ∝ ln[LF], for both perfectly and partially transparent dot-lead couplings. In contrast, when dephasing occurs due to the coupling to an external dot, $\tilde \tau $ ∝ ln[L/ξ] depends on the correlation length ξ of the coupling potential instead of λF.  相似文献   

10.
The $\bar pp$ -annihilation reactions $\bar pp \to \eta \eta \eta$ and $\bar pp \to \eta {\rm K}\bar {\rm K}$ at rest are considered in the tree approximation in the framework of SU(3) chiral effective theory at leading order. The calculated branchings are compared with the data. The results for neutral (????, $\eta {\rm K}^0 \bar {\rm K}^0$ ) and charged (??K + K ?) channels are essentially different.  相似文献   

11.
In order to understand the structure of the X(3872) the effects of the ${{\rm c\overline{c}}}$ charmonium core state coupling to the ${D^0\overline{D}^{*0}}$ and D + D *? molecule states are studied. The obtained structure of the X(3872) is about 9 % of ${{\rm c}\overline{{\rm c}}}$ charmonium, 75 % of the isoscalar ${D\overline{D}}$ molecule and 16 % of the isovector ${D\overline{D}}$ molecule which explains observed properties of the X(3872) well.  相似文献   

12.
By investigating the behavior of two solvable isochronous N-body problems in the immediate vicinity of their equilibria, functional equations satisfied by the para-Jacobi polynomial ${p_{N} \left(0, 1; \gamma; x \right)}$ and by the Jacobi polynomial ${P_{N}^{\left(-N-1,-N-1 \right)} \left(x \right)}$ (or, equivalently, by the Gegenbauer polynomial ${C_{N}^{-N-1/2}\left( x \right) }$ ) are identified, as well as Diophantine properties of the zeros and coefficients of these polynomials.  相似文献   

13.
We consider a general class of discrete nonlinear Schrödinger equations (DNLS) on the lattice ${h\mathbb{Z}}$ with mesh size h > 0. In the continuum limit when h → 0, we prove that the limiting dynamics are given by a nonlinear Schrödinger equation (NLS) on ${\mathbb{R}}$ with the fractional Laplacian (?Δ) α as dispersive symbol. In particular, we obtain that fractional powers ${\frac{1}{2} < \alpha < 1}$ arise from long-range lattice interactions when passing to the continuum limit, whereas the NLS with the usual Laplacian ?Δ describes the dispersion in the continuum limit for short-range or quick-decaying interactions (e. g., nearest-neighbor interactions). Our results rigorously justify certain NLS model equations with fractional Laplacians proposed in the physics literature. Moreover, the arguments given in our paper can be also applied to discuss the continuum limit for other lattice systems with long-range interactions.  相似文献   

14.
Dynamics of hadro-quarkonium system is formulated, based on the channel coupling of a light hadron (h) and heavy quarkonium $\left( {Q\bar Q} \right)$ to heavy-light mesons ( $Q_{\bar q}$ , $\bar Q_q$ ). Equations for hadro-quarkonium amplitudes and resonance positions are written explicitly, and numerically calculated for the special case of π?(nS) (n = 1, 2, 3). It is also shown that the recently observed by Belle two peaks Z b (10610) and Z b (10650) are in agreement with the proposed theory. It is demonstrated that theory predicts peaks at the BB*, B*B* thresholds in all available π?(nS) channels.  相似文献   

15.
Charmonium rescattering effects in the M1 transition of $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ are investigated by modeling a $ \chi_{{cJ}}^{}$ or J/ $ \psi$ rescattering into a $ \eta_{c}^{}$ final state. The absorptive and dispersive part of the transition amplitudes for the rescattering loops of $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) and $ \gamma$ $ \chi$ ( $ \psi$ ) are separately evaluated. The numerical results show that the contribution from the $ \gamma$ $ \chi$ ( $ \psi$ ) rescattering process is negligible. Compared with the virtual D $ \bar{{D}}$ (D *) rescattering processes, the $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) process may be regarded as the next-leading order of the hadronic loop mechanism, which only offers the partial decay width of ~ 0.045 keV to the $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ .  相似文献   

16.
The conductivity of composites in the presence of a magnetic field H is considered. The galvanomagnetic characteristics for a weakly inhomogeneous medium are determined in explicit form in an approximation quadratic in the deviations of conductivity tensor $\hat \sigma $ (r) from its mean value 〈 $\hat \sigma $ 〉. The contribution to the effective conductivity tensor $\hat \sigma _e $ linear in concentration c of inclusions for a composite with a small value of c is expressed in terms of the dipole polarizability of an individual inclusion, which is defined in the transformed system in which it is surrounded by an isotropic matrix with a scalar conductivity. Transition to this system is performed using a symmetry transformation that does not change the dc equations. An approximate approach proposed for describing the galvanomagnetic properties of composites in the wide range of parameters appearing in the problem generalizes the standard theory of an effective medium to the case of anisotropic systems with inclusions of arbitrary shape in field H ≠ 0.  相似文献   

17.
It is shown that for each finite number N of Dirac measures ${\delta_{s_n}}$ supported at points ${s_n \in {\mathbb R}^3}$ with given amplitudes ${a_n \in {\mathbb R} \backslash\{0\}}$ there exists a unique real-valued function ${u \in C^{0, 1}({\mathbb R}^3)}$ , vanishing at infinity, which distributionally solves the quasi-linear elliptic partial differential equation of divergence form ${-\nabla \cdot ( \nabla{u}/ \sqrt{1-| \nabla{u} |^2}) = 4 \pi \sum_{n=1}^N a_n \delta_{s_n}}$ . Moreover, ${u \in C^{\omega}({\mathbb R}^3\backslash \{s_n\}_{n=1}^N)}$ . The result can be interpreted in at least two ways: (a) for any number N of point charges of arbitrary magnitude and sign at prescribed locations s n in three-dimensional Euclidean space there exists a unique electrostatic field which satisfies the Maxwell-Born-Infeld field equations smoothly away from the point charges and vanishes as |s| ?? ??; (b) for any number N of integral mean curvatures assigned to locations ${s_n \in {\mathbb R}^3 \subset{\mathbb R}^{1, 3}}$ there exists a unique asymptotically flat, almost everywhere space-like maximal slice with point defects of Minkowski spacetime ${{\mathbb R}^{1, 3}}$ , having lightcone singularities over the s n but being smooth otherwise, and whose height function vanishes as |s| ?? ??. No struts between the point singularities ever occur.  相似文献   

18.
In the presence of an electric dipole coupling of $\overline {tt} $ to a photon, and an analogous ‘weak’ dipole coupling to the Z, CP violation in the process e+e? $\overline {tt} $ results in modified polarization of the top and the anti-top. This polarization can be analyzed by studying the angular distributions of decay charged leptons when the top or anti-top decays leptonically. Analytic expressions are presented for these distributions when eithert or $\overline t $ decays leptonically, including $\mathcal{O}$ s) QCD corrections in the soft-gluon approximation. The angular distributions are insensitive to anomalous interactions in top decay. Two types of simple CP-violating polar-angle asymmetries and two azimuthal asymmetries, which do not need the full reconstruction of thet or $\overline t $ , are studied. Independent 90% CL limits that may be obtained on the real and imaginary parts of the electric and weak dipole couplings at a linear collider operating at √ s = 500 GeV with integrated luminosity 500 fb? and also at √s = 1000 GeV with integrated luminosity 1000 fb? have been evaluated. The effect of longitudinal electron and/or positron beam polarizations has been included.  相似文献   

19.
A full ligand-field energy matrix diagonalization treatment for 3d 1 ions in tetragonal symmetry is developed on the basis of the two spin?Corbit coupling parameter model, and the contributions of the spin?Corbit coupling of the ligand ions to the optical and electron paramagnetic resonance spectra are included. Spin Hamiltonian parameters of the tetragonal ${\rm V}^{4+}$ center in $\hbox{K}_2\hbox{SO}_4 {-} \hbox{Na}_2\hbox{SO}_4{-}\hbox{ZnSO}_4$ glass are calculated from the complete energy matrix diagonalization and the perturbation theory methods. The results calculated by both methods are not only close to each other but also in good agreement with the experimental values. Furthermore, the compressed defect structure of the ${\rm (VO_6)^{8-}}$ cluster is discussed.  相似文献   

20.
We consider a lattice SU(3) QCD model in 2 + 1 dimensions, with two flavors and 2 × 2 spin matrices. An imaginary time functional integral formulation with Wilson’s action is used in the strong coupling regime, i.e. small hopping parameter ${0 < \kappa \ll 1}$ , and much smaller plaquette coupling ${\beta, 0 < \beta \ll \kappa}$ . In this regime, it is known that the low-lying energy-momentum spectrum contains isolated dispersion curves identified with baryons and mesons with asymptotic masses ${m\approx-3\ln\kappa}$ and ${m_m\approx-2\ln\kappa}$ , respectively. We prove the existence of two (labelled by ±) two-baryon bound states for each of the total isospin sectors I = 0,1 and we obtain, in each case, the exact binding energies ${\epsilon_{I\,\pm} }$ (of order ${\kappa^2}$ ) which extend to jointly analytic function in ${\kappa}$ and β. We also prove that these points are the only mass spectrum up to slightly above the bound state masses. Precisely, we show, for ${\alpha_0=\frac 14, \alpha_1=\frac 1{12}, \alpha_2=\frac12, \alpha_3=\frac 34}$ and small ${\delta >0 }$ , that the bound state masses ${2m-\epsilon_{I\,\pm}}$ are the only points in the mass spectrum in ${(0,2m-\epsilon_{I\,\pm}+\delta \alpha_I\kappa^2)}$ , for I = 0,1, and in ${(0,2m-(1+\delta)\alpha_I\kappa^2)}$ , for I = 2,3. These results are exact and validate our previous results obtained in a ladder approximation. The method employs suitable two- and four-point correlations with spectral representations and a lattice Bethe-Salpeter equation. For I = 0,1, a quark, antiquark space-range one potential of order ${\kappa^2}$ is found to be the dominant contribution to the two-baryon interaction and the interaction of the individual quark isospins of one baryon with those of the other is described by permanents. A novel spectral free decomposition (but spectral representation motivated, for real κ and β) of the two-point correlation, after performing a complex extension, is a key ingredient in showing the joint analyticity of the binding energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号