首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

2.
The 1 : 3 Schiff base condensates of tris(2-aminoethyl)amine (tren) or tris(3-aminopropyl)amine (trpn) with 4-methyl-5-imidazolecarboxaldehyde, H3L1 and H3L2, respectively, were generated in situ and used to prepare complexes with manganese(II) and iron(III). The resultant complexes, [MnH3L1](ClO4)2, [MnH3L1](ClO4)2.EtOH.H2O, [MnH3L2](ClO4)2, [FeH3L1](ClO4)3.1.5(EtOH) and [FeHL1](I3) (0.525)(I)(0.475).2.625H2O, have been characterized by EA, IR, ES MS, variable temperature magnetic susceptibility, X-ray crystallography, and M?ssbauer spectroscopy for the iron complexes. The three manganese(II) complexes are high spin with [MnH3L2](ClO4)2 exhibiting coordination number seven while the others are six coordinate. [FeH3L1](ClO4)3.1.5(EtOH) has two iron sites, a seven coordinate and a pseudo seven coordinate site. The complex is high spin at room temperature but exhibits a magnetic moment that decreases with temperature corresponding to conversion of one of the sites to low spin. [FeHL1](I3) (0.525)(I)(0.475).2.625H2O is low spin even at room temperature. In the present complexes the apical nitrogen atom, N(ap), of the tripodal ligand is pyramidal and directed toward the metal atom. The data show that the M-N(ap) distance decreases as the oxidation state of the metal increases, as the number of bound imidazole protons on the ligand increases, and as the number of carbon atoms in the backbone of the ligand (tren vs. trpn) increases. In a limiting sense, short M-N(ap) distances result in high spin seven coordinate mono capped octahedral complexes and long M-N(ap) distances result in low spin six coordinate octahedral complexes.  相似文献   

3.
A new series of acyclic mononuclear copper(II) complexes have been prepared by Schiff-base condensation derived from 5-methylsalicylaldehyde, diethylenetriamine, tris(2-aminoethyl) amine, triethylenetetramine, N,N-bis(3-aminopropyl)ethylene diamine, N,N-bis(aminopropyl) piperazine, and copper perchlorate. All the complexes were characterized by elemental and spectral analyses. Electronic spectra of the complexes show a d–d transition in the range 500–800?nm, electrochemical studies of the complexes show irreversible one-electron-reduction process around ?1.10 to ?1.60?V. The reduction potential of the mononuclear copper(II) complexes shifts toward anodic direction upon increasing the chain length of the imine compartment. ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry, with nuclear hyperfine spin 3/2. The copper(II) complexes show a normal room temperature magnetic moment value μ eff?=?1.72–1.76?BM, close to the spin-only value of 1.73?BM. Electrochemical and catalytic studies of the complexes were compared on the basis of increasing the chain length of the imine compartment. All the complexes were screened for antifungal and antibacterial activities.  相似文献   

4.
Reaction in unheated solutions between metal salts, bis(3–aminopropyl)amine (dpt) and 2,6–diacetylpyridine (dap) gives the ternary complexes [M(dpt)(dap)]2+ (M=Ni or Cu), in which no Schiff-base condensation has occurred. Cyclisation requires long standing or heating. For tris(3–aminopropyl)amine and nickel(II), X-ray crystallography shows that reaction in MeOH can be stopped after condensation of one carbonyl and one amine group to give a coordinated open-chain hexadentate ligand, an intermediate in the formation of the fully condensed macrocycle. With the 2–(aminoethyl)-4–(butylamino)amine (ebt), the butylamine groups are involved in intermolecular condensation with carbonyl groups from adjacent units, giving oligomeric or polymeric complexes.  相似文献   

5.
New ruthenium(II) complexes having a tetradentate ligand such as tris(2-pyridylmethyl)amine (TPA), tris[2-(5-methoxycarbonyl)pyridylmethyl]amine [5-(MeOCO)3-TPA], tris(2-quinolylmethyl)amine (TQA), or bis(2-pyridylmethyl)glycinate (BPG) have been prepared. The reaction of the ligand with [RuCl2(Me2SO)4] resulted in a mixture of trans and cis isomers of the chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complexes containing a TPA or a BPG, whereas a trans(Cl,N(amino)) isomer was selectively obtained for 5-(MeOCO)3-TPA and TQA. The trans and cis isomers of the [RuCl(TPA)(Me2SO)]+ complex were easily separated by fractional recrystallization. The molecular structures of trans- and cis(Cl,N(amino))-[RuCl(TPA)(Me2SO)]+ complexes and the trans(Cl,N(amino))-[RuCl{5-(MeOCO)3-TPA}(Me2SO)]+ complex have been determined by X-ray structural analyses. The reaction of TPA with [RuCl2(PhCN)4] gave a single isomer of the chloro(benzonitrile)ruthenium(II) complex, whereas the bis(benzonitrile)ruthenium(II) complex was obtained with BPG. The cis(Cl,N(amino))-[RuCl(TPA)(Me2SO)]+ complex is thermodynamically much less stable than the trans isomer and isomerizes in dimethyl sulfoxide at 65-100 degrees C. Oxygenation of alkanes catalyzed by these ruthenium(II) complexes has been examined. The chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complexes with TPA and its derivatives using m-chloroperbenzoic acid as a cooxidant showed high catalytic ability. Adamantane was efficiently and selectively oxidized to give 1-adamantanol up to 88%. The chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complex with 5-(MeOCO)3-TPA was found to be the most active catalyst among the complexes examined.  相似文献   

6.
A series of manganese(II), iron(II) and cobalt(II) bis(triflate) complexes containing linear tetradentate bis(imine) and bis(amine) ligands with a biphenyl bridge have been synthesized. The twist in the ligand backbone due to the biphenyl unit leads in the case of the bis(imine) ligands (1 and 2) containing sp2 hybridised N donors, to a distorted cis-alpha coordination geometry, whereas in the case of the biphenyl- and biphenylether-bridged bis(amine) ligands (7 - 9 and 12), a trans coordination geometry is observed. The catalytic properties of the complexes for the oxidation of cyclohexane, using H2O2 as the oxidant, have been evaluated. Only the iron complexes show any catalytic activity under the conditions used, but the low conversions and selectivies observed indicate that these catalysts lead predominantly to free radical auto-oxidation.  相似文献   

7.
To investigate the influence of a potentially N4-tripodal amine ligand on the structure and internal exchange processes of its complexes with late transition metals, five rhodium, six palladium and two platinum complexes have been prepared from seven alkyl-bridged N-heterocyclic amine tripodal ligands: tris(2-pyridylmethyl)amine, (2-(2-pyridylethyl))bis(2-pyridylmethyl)amine, bis(2-(2-pyridylethyl))-2-pyridylmethylamine, bis(2-(2-pyridylethyl))amine, ((6-(hydroxymethyl)-2-pyridyl)methyl)bis(2-pyridylmethyl)amine, tris(2-benzimidazolylmethyl)amine (tbima) and tris(3-ethyl-2-benzimidazolylmethyl)amine. Single-crystal X-ray diffraction studies were completed for ten complexes: the d6-rhodium(III) complexes are octahedral with kappa 4 N-bound ligands, whereas the d8-palladium(II) and d8-platinum(II) complexes are square planar, kappa 3 N-bound by the tripodal ligand with a dangling N-donor leg, except for the unusual [Pd2(tbima)2Cl2]Cl2 dimer in which each palladium(II) ion is square planar and bound by two benzimidazole legs from one tbima ligand, one leg from the other tbima ligand and a chloride ancillary ligand. Cation bilayers are a common structural motif in the crystal structures. Variable-temperature 1H NMR studies reveal exchange occurs between the coordinated and dangling N-donor legs in the palladium and platinum complexes. Exchange free energy (Delta G++ c) values have been calculated and some general rules governing the favoured complex structures and exchange pathways elucidated. The palladium(II) and platinum(II) complexes of a ligand with an pyridylethyl leg are unstable with respect to elimination of vinylpyridine.  相似文献   

8.
Reaction of iron(II) and the 3 : 1 Schiff base condensate of 5-methylpyrazole-3-carboxaldehyde and tris(2-aminoethyl)amine in air gives a pseudo-dimer complex with a triple helix structure made of Delta-Delta and Lambda-Lambda pairings of spin crossover iron(II) and low spin iron(III) cations that are held together by three pi-pi and hydrogen bonding interactions.  相似文献   

9.
Ruthenium(II)-pterin complexes were prepared using tetradentate and tripodal tris(2-pyridylmethyl)amine (TPA) and tris(5-methyl-2-pyridylmethyl)amine (5-Me3-TPA) as auxiliary ligands together with 2-(N,N-dimethyl)-6,7-dimethylpterin (Hdmdmp) and 6,7-dimethylpterin (Hdmp) as pterin derivatives for ligands. Characterization was made by spectroscopic methods, X-ray crystallography, and electrochemical measurements. The pterin ligands coordinated to the ruthenium centers as monoanionic bidentate ligands via the 4-oxygen of the pyrimidinone moiety and the 5-nitrogen of the pyrazine parts. The striking feature is that the coordinated dmp- ligand exhibits a quinonoid structure rather than a deprotonated biopterin structure, showing a short C-N bond length for the 2-amino group. Those complexes exhibit reversible two-step protonation for both pterin derivatives coordinated to the ruthenium centers to give a drastic spectral change in the UV-vis spectroscopy. Doubly protonated Ru(II)-pterin complexes were stabilized by pi-back-bonding interaction and exhibited clear and reversible proton-coupled electron transfer (PCET) to give ruthenium-coordinated neutral monohydropterin radicals as intermediates of PCET processes. Those ESR spectra indicate that the unpaired electron delocalizes onto the PCET region (N5-C6-C7-N8) of the pyrazine moiety.  相似文献   

10.
The 'Click'-derived tripodal ligand tris[(1-benzyl-1H-1,2,3-triazole-4-yl)methyl]amine, tbta, was used to synthesize the complexes [Fe(tbta)Cl]BF(4), 1, and [Co(tbta)Cl]BF(4), 2. Both complexes were characterized by (1)H NMR spectroscopy and elemental analysis. Single-crystal X-ray structural determination of 2 shows a 4 + 1 coordination around the cobalt(II) center with a rather long bond between Co(II) and the central amine nitrogen atom of tbta. Such a coordination geometry is best described as capped tetrahedral. 1 and 2 are thus the first examples of pseudotetrahedral coordinated Fe(II) and Co(II) complexes with tbta. A combination of SQUID susceptometry, EPR spectroscopy, M?ssbauer spectroscopy, and DFT calculations was used to elucidate the electronic structures of these complexes and determine the spin state of the metal center. Comparisons are made between the complexes presented here with related complexes of other ligands such as tris(2-pyridylmethyl)amine, tmpa, hydrotris(pyrazolyl) borate, Tp, and tris(2-(1-pyrazolyl)methyl)amine, amtp. 1 and 2 were tested as precatalysts for the homopolymerization of ethylene, and both complexes delivered distinctly different products in this reaction. Blind catalyst runs were carried out with the metal salts to prove the importance of the tripodal ligand for product formation.  相似文献   

11.
New Zn(II), Fe(II) and Mn(II) complexes with a combination of nitrogen-donor ligands and trithiocyanuric acid (ttcH3) were prepared and characterized by elemental analysis, IR and UV–Vis spectroscopies. The antitumor activity of the prepared complexes, together with already known Ni(II) species, were assayed in vitro against G-361 (human malignant melanoma), HOS (human osteogenic sarcoma), K-562 (human chronic myelogenous leukaemia) and MCF-7 (human breast adenocarcinoma) tumor cell lines. The IC50 values of the Fe(II) and Mn(II) compounds turned out to be lower than those of cisplatin and oxaliplatin. The antimicrobial activities were evaluated by MIC against bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis). The molecular structure of [Zn(taa)(ttcH)] · H2O (taa = tris(2-aminoethyl)amine) was determined by X-ray diffraction. The central atom is pentacoordinated by four N atoms of taa and one N atom of the ttcH dianion.  相似文献   

12.
A dynamic combinatorial library of metal ion Schiff-base complexes have been studied for the extraction of Zn(II) or Cd(II) from aqueous solution into chloroform. Library components consist of different aminophenols and 2-pyridinecarboxaldehyde. Extraction of both Zn(II) and Cd(II) into chloroform was observed from aqueous solutions containing 0.0500 mM M(NO3)2, 0.100 M aminophenol, 0.100 M 2-pyridinecarboxaldehyde, 0.100 M NaCl, and 5.00 mM buffer at pH 8.5. Extraction was dependent on pH but not on counterions including Cl-, Br-, or NO3-. Studies showed that equilibrium was attained between the Schiff-base complexes across the two-phase chloroform-water system after 24 h of stirring. Analysis of the extracted species by use of 1H NMR spectroscopy and mass spectrometry as well as solubility studies on characterized complexes suggested that the major extracted species is the neutral bis-Schiff-base metal ion complex. In libraries containing mixtures of two different aminophenols and 2-pyridinecarboxaldehyde, an enhanced extent of extraction of Zn(II) into chloroform is observed. Studies suggest that a Zn(II) complex, which is likely the mixed Schiff-base complex, has superior extraction properties compared to simple libraries with a single aminophenol component. The structures of two bis-Schiff-base complexes of Zn(II) and one of Cd(II) have been determined by X-ray crystallography. The geometries of the two Zn(II) complexes, which differ only by a methyl substituent on the Schiff-base ligand, are markedly different, supporting the use of combinatorial methods in coordination chemistry. Zn(SB14)2 crystallized as the sesquihydrate (C24H18N4O2Zn.1.5 H2O) in the space group C2/c, with cell dimensions a = 23.219(15) A, b = 11.299(7) A, c = 16.822(11) A, beta = 102.91(5) degrees, V = 4302(5) A3, and Z = 8. Zn(SB15)2 crystallized as a 1:1 methanol solvate (C26H22N4O2Zn.CH3OH) in the space group P2(1)/c with cell dimensions a = 13.981(5) A, b = 7.978(3) A, c = 22.568(8) A, beta = 104.53(3) degrees, V = 2436.8(15) A3, and Z = 4. Cd(SB14)2 crystallized as a 1:1 ethanol solvate (C24H18N4O2Cd.CH3CH2OH) in the space group R3 with unit cell dimensions of a = 36.423(2) A, c = 9.2930(10) A, V = 10678(2) A3, and Z = 18.  相似文献   

13.
A series of manganese(II) complexes containing tetradentate Schiff-base ligands have been synthesized. The Schiff-base ligands were obtained by condensation of salicylaldehyde, 2-OH acetophenone or 2-OH, 3-X, 5-methyl acetophenone with ethylenediamine (X?=?Cl, Br, I). The complexes have been characterized by elemental analysis, IR, UV-VIS, ESMS, EPR spectroscopy, cyclic voltammetry and thermal analysis. The cyclic voltammograms of the complexes exhibit quasi-reversible behavior. The electrochemical potentials are influenced by the methyl and halogen atoms grafted on the ligand molecules. An EPR spectrum for the polycrystalline sample shows one broad isotopic signal as compared with the six lines for frozen solution in DMF.  相似文献   

14.
The kinetics and product analyses of the amine exchange reactions of two 2-aminopyridine derived Schiff-base ligands and their monomeric bischelate and dimeric copper(II) complexes have been studied. The Schiff-base ligands investigated underwent amine exchange reactions with n-butyl, cyclohexyl, t-butyl amines. The coordination of the Schiff-base ligands to copper(II) rendered the amine exchange reactions slower. With n-butyl and cyclohexyl amines, parallel first- and second-order terms on their concentrations are observed for the amine exchange reactions of copper(II) bischelates and dimer. The kinetic data favor a mechanism involving a rate-limiting elimination of 2-aminopyridine from a diaminoacetal intermediate in preference to a scheme in which a dissociation of the complexes into free ligands and Cu(II) may precede the amine exchange. The steric factors influence the amine exchange reactions of Cu(II) bischelates with the bulkier amines reacting slower as given by the order t-butylamine (3.3 ± 0.3 × 10?3 dm3/mol·s) < cyclohexylamine (0.2 ± 0.03 dm3/mol·s) < n-butylamine (2.2 ± 0.2 dm3/mol·s). The bulkiness of the t-butyl group and the constraints imposed by the changes in the coordination geometry of Cu(II) on amine exchange not only render the reactions of Cu(II) bischelates slower but also make the formation of the mixed adduct ([N-(5-methyl)-2-pyridyl salicylaldimine][N-t-butyl salicylaldimine] Cu(II)) more favored.  相似文献   

15.
Summary The voltammetric properties of the complexes formed by manganese(II), iron(II), and cobalt(II) ions with a heptadentate Schiff-base ligand have been investigated by cyclic voltammetry and controlled-potential coulometry at mercury and platinum electrodes in acetonitrile and dimethyl sulfoxide solvents.All the species undergo a single one-electron oxidation process leading to the corresponding stable metal(III) complexes which have been isolated and characterized.The cathodic behaviour of manganese(II) and iron(II) derivatives is very similar, in that the less cathodic process occurs at nearly equal potential values, indicating that the ligand moiety is reduced rather than the metal centre. The one-electron reduction process of the cobalt(II) complex leads to the corresponding cobalt(I) derivative, stable in the electrolysis solution.  相似文献   

16.
三(2-苯并咪唑亚甲基)胺合锰的结构和量化计算   总被引:2,自引:0,他引:2  
合成了三 ( 2 苯并咪唑亚甲基 )胺合锰 (II) (C48H5 0 N1 4 O4Mn2 Cl4) ,采用X射线单晶衍射方法测定了晶体结构 ,并进行了量子化学计算 .晶体属于单斜晶系 ,空间群P2 1 /C ,晶胞参数 :a =1 4 2 38( 7)nm ,b =2 4 80 2 ( 3)nm ,c =1 6 977( 7)nm ,β =92 51( 4)° ,V =5 9893nm3 ,Z =4 用重原子法及傅里叶合成方法解出结构 ,最终R值为 0 0 7 Mn2 处于变形三角双锥配位环境中 .量子化学计算表明配体具有负电荷空穴 ,使其易于与金属离子配位  相似文献   

17.
The preparation of donor (D)-photosensitizer (S) arrays, consisting of a manganese complex as D and a ruthenium tris(bipyridyl) complex as S has been pursued. Two new ruthenium complexes containing coordinating sites for one (2a) and two manganese ions (3a) were prepared in order to provide models for the donor side of photosystem II in green plants. The manganese coordinating site consists of bridging and terminal phenolate as well as terminal pyridyl ligands. The corresponding ruthenium-manganese complexes, a manganese monomer 2b and dimer 3b, were obtained. For the dimer 3b, our data suggest that intramolecular electron transfer from manganese to photogenerated ruthenium(III) is fast, k(ET) > 5 x 10(7) s(-)(1).  相似文献   

18.
Three Cd(II) or Co(II) macroacyclic Schiff-base complexes [CoL1Br]ClO4 (1), [CdL2Cl]ClO4 (2) and [CdL3(NO3)]ClO4 (3) were prepared by template condensation of 2-pyridinecarboxaldehyde and three different amines containing piperazine moiety, N,N′-bis(2-aminoethyl)piperazine, N,N′(2-aminoethyl)(3-aminopropyl)piperazine and N,N′-bis(3-aminopropyl)piperazine, in the presence of Co(II) or Cd(II) metal ions, respectively. All complexes have been studied with IR, FAB mass and microanalysis and for complex (3) by 1H and 13C NMR spectra. One of these complexes, [CdL3(NO3)]ClO4 (3) has been characterized through X-ray crystallography. In complex (3), the Cd(II) ion is coordinated by the six nitrogen donor atoms from the ligand and by one oxygen atom from a monodentate nitrate ion in a N6O environment.  相似文献   

19.
Reactions of MnX2.nH2O with tris(N-(D-mannosyl)-2-aminoethyl)amine ((D-Man)3-tren), which was formed from D-mannose and tris(2-aminoethyl)amine (tren) in situ, afforded colorless crystals of [Mn((D-Man)3-tren)]X2 (3a, X = Cl; 3b, X = Br; 3c, X = NO3; 3d, X = 1/2SO4). The similar reaction of MnSO4.5H2O with tris(N-(L-rhamnosyl)-2-aminoethyl)amine ((L-Rha)3-tren) gave [Mn((L-Rha)3-tren)]SO4 (4d), where L-rhamnose is 6-deoxy-L-mannose. The structures of 3b and 4d were determined by X-ray crystallography to have a seven-coordinate Mn(II) center ligated by the N-glycoside ligand, (aldose)3-tren, with a C3 helical structure. Three D-mannosyl residues of 3b are arranged in a delta(ob3) configuration around the metal, leading to formation of a cage-type sugar domain in which a water molecule is trapped. In 4d, three L-rhamnosyl moieties are in a delta(lel3) configuration to form a facially opened sugar domain on which a sulfate anion is capping through hydrogen bonding. These structures demonstrated that a configurational switch around the seven-coordinate manganese(II) center occurs depending on its counteranion. Reactions of 3a, 3b, and 4d with 0.5 equiv of Mn(II) salt in the presence of triethylamine yielded reddish orange crystals formulated as [[Mn((aldose)3-tren)]2Mn(H2O)X3.nH2O (5a, aldose = D-Man, X = Cl; 5b, aldose = D-Man, X = Br; 6d, aldose = L-Rha, X = 1/2SO4). The analogous trinuclear complexes 6a (aldose = L-Rha, X = Cl), 6b (aldose = L-Rha, X = Br), and 6c (aldose = L-Rha, X = NO3) were prepared by the one-pot reaction of Mn(II) salts with (L-Rha)3-tren without isolation of the intermediate Mn(II) complexes. X-ray crystallographic studies revealed that 5a, 5b, 6c, and 6d have a linearly ordered trimanganese core, Mn(II)Mn(III)Mn(II), bridged by two carbohydrate residues with Mn-Mn separations of 3.845(2)-3.919(4) A and Mn-Mn-Mn angles of 170.7(1)-173.81(7) degrees. The terminal Mn(II) atoms are seven-coordinate with a distorted mono-face-capped octahedral geometry ligated by the (aldose)3-tren ligand through three oxygen atoms of C-2 hydroxyl groups, three N-glycosidic nitrogen atoms, and a tertiary amino group. The central Mn(III) atoms are five-coordinate ligated by four oxygen atoms of carbohydrate residues in the (aldose)3-tren ligands and one water molecule, resulting in a square-pyramidal geometry. In the bridging part, a beta-aldopyranosyl unit with a chair conformation bridges the two Mn(II)Mn(III) ions with the C-2 mu-alkoxo group and with the C-1 N-glycosidic amino and the C-3 alkoxo groups coordinating to each metal center. These structures could be very useful information in relation to xylose isomerases which promote aldose-ketose isomerization by using divalent dimetal centers such as Mn2+, Mg2+, and Co2+.  相似文献   

20.
Reaction of H(3)L(1), the Schiff base condensate of tris(2-aminoethyl)amine with three equivalents of 5-methyl-1H-pyrazole-3-carboxaldehyde, with manganese(II)perchlorate or iron(II)tetrafluoroborate results in the isolation of [MH(3)L(1)]X(2) (M = Mn and X = ClO(4) and M = Fe and X = BF(4)). These complexes are high spin d(5) and d(6), respectively, as inferred from the long M-N bond distances obtained by single crystal X-ray diffraction for both and variable temperature magnetic susceptibility and M?ssbauer spectroscopy for the iron complex. Aerobic treatment of a solution of [CoH(3)L(1)](2+) with three equivalents of potassium hydroxide produced [CoL(1)]. Homonuclear pseudo-dimers were prepared by the aerobic reaction of [FeH(3)L(1)](BF(4))(2) with 1.5 equivalents of potassium hydroxide to give {[FeH(1.5)L(1)](BF(4))}(2) or by the metathesis reaction of [FeH(2)L(1)][FeHL(1)](ClO(4))(2) with sodium hexafluorophosphate to give [FeH(3)L(1)][FeL(1)](PF(6))(2). The complexes were characterized by EA, IR, ESI-MS, variable temperature single crystal x-ray diffraction and M?ssbauer spectroscopy. The iron(III) atom is low spin while the iron(II) atom is spin crossover. Heteronuclear pseudo-dimers were prepared by the 1:1 reaction of [FeH(3)L(1)](BF(4))(2) or [MnH(3)L(1)](ClO(4))(2) with [CoL(1)]. [MH(3)L(1)][CoL(1)](X)(2) (M = Fe and X = BF(4) or M = Mn and X = ClO(4)), were characterized by IR, EA, variable temperature single crystal X-ray diffraction and M?ssbauer spectroscopy in the iron case. The data support a spin crossover and high spin assignment for the iron(II) and manganese(II), respectively. DFT calculations demonstrate that the spin state of the iron(II) atom in {[FeH(3)L(1)][FeL(1)]}(2+) changes from high spin to low spin as the iron(II)-iron(III) distance decreases. This is supported by experimental results and is a result of hydrogen bonding interactions which cause a significant compression of the M(II)-N(pyrazole) bond distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号