首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple HPLC‐UV method was developed and validated for the quantification of pterostilbene (3,5‐dimethoxy‐4'‐hydroxy‐trans‐stilbene), a pharmacologically active phytoalexin in rat plasma. The assay was carried out by measuring the UV absorbance at 320 nm. Pterostilbene and the internal standard, 3,5,4'‐trimethoxy‐trans‐stilbene eluted at 5.7 and 9.2 min, respectively. The calibration curve (20–2000 ng/mL) was linear (R2 > 0.997). The lower limits of detection and of quantification were 6.7 and 20 ng/mL, respectively. The intra‐ and inter‐day precisions in terms of RSD were all lower than 6%. The analytical recovery ranged from 95.5 ± 3.7 to 103.2 ± 0.7% while the absolute recovery ranged from 101.9 ± 1.1 to 104.9 ± 4.4%. This simple HPLC method was subsequently applied in a pharmacokinetic study carried out in Sprague–Dawley rats. The terminal elimination half‐life and clearance of pterostilbene were 96.6 ± 23.7 min and 37.0 ± 2.5 mL/min/kg, respectively, while its absolute oral bioavailability was 12.5 ± 4.7%. Pterostilbene appeared to have better pharmacokinetic characteristics than its natural occurring analog, resveratrol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Existing methods to determine oxyresveratrol, a trans‐polyphenolic stilbene, lack selectivity, require large plasma sample volumes or have time‐consuming sample preparation and chromatographic isolation. Here an improved highly sensitive liquid chromatography–tandem mass spectrometry method was developed to determine low oxyresveratrol concentrations in rat plasma. The plasma samples were prepared by liquid–liquid extraction with acetoacetate. The analyte s were separated on Venusil hydrophilic interaction chromatography (HILIC) column (2.1 × 50 mm, 5.0 µm) guarded by a HILIC column (4 × 3.0 mm, 5.0 µm). The mobile phase consisted of acetonitrile–water (containing 1 mmol/L ammonium formate) at gradient elution mode with a flow rate of 0.3 mL/min. Resveratrol was used as the internal standard. An electrospray ionization source was applied and operated in the negative multiple reaction monitoring (MRM) mode. Oxyresveratrol and resveratrol were detected on MRM by the transitions from the precursor to the product ion (m/z 243.1 → 175.1 and 227.1 → 143.0). The total running time was 5 min and the retention times of oxyresveratrol and resveratrol were 1.97 and 1.82 min. Chromatograms showed no endogenous interfering peaks with blank samples. The linear calibration curve was obtained over the concentration range of 1–500 ng/mL. The injection volume was 10 μL and the limit of quantification was 1 ng/mL. The extraction recovery varied from 78.2 to 84.3% for low, medium and high quality control samples. At the same time, the intra‐ and inter‐day relative standard deviations were <6.78 and <10.02%, respectively, while the corresponding intra‐ and inter‐day accuracy relative error values fell in the range of 3.75–6.67%. The HPLC‐MS/MS method was successfully applied to a pharmacokinetics study, in which the experimental rats received a single dose of oxyresveratrol (10 mg/kg, intragastric administration). The pharmacokinetic results are presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Luteoloside is a potential anticarcinogenic component isolated from Lonicera japonica, a traditional Chinese medicine (TCM). This study details the development and validation of a sensitive and accurate HPLC‐ESI‐MS/MS method for the quantification of luteoloside in dog plasma. Sample pretreatment includes simple protein precipitation using methanol–acetonitrile (1:1, v/v). A Phenomenex Gemini C18 column (2.0 × 50 mm, i.d., 3.5 µm) was used to separate luteoloside and internal standard by gradient mode with mobile phase consisting of water containing 0.1% formic acid and methanol containing 0.1% formic acid at a flow rate of 0.40 mL/min with a column temperature of 25°C. The detection was performed by positive ion electrospray ionization (ESI) in multiple reaction monitoring mode. The calibration curves were linear (R > 0.995) over the concentration range 1.0–2000 ng/mL and the lower limit of quantification was 1.0 ng/mL. The intra‐day and inter‐day precisions (RSD) were all <15%, accuracies (RE) were within the range of ±15%, and recoveries were between 85.0 and 115%. The validated HPLC‐ESI‐MS/MS method was successfully applied to determine plasma concentrations of luteoloside after intravenous administration of luteoloside at a dose level of 20 mg/kg. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determination of bakkenolide D (BD), which was further applied to assess the pharmacokinetics of BD. In the LC‐MS/MS method, the multiple reaction monitoring mode was used and columbianadin was chosen as internal standard. The method was validated over the range of 1–800 ng/mL with a determination coefficient >0.999. The lower limit of quantification was 1 ng/mL in plasma. The intra‐ and inter‐day accuracies for BD were 91–113 and 100–104%, respectively, and the inter‐day precision was <15%. After a single oral dose of 10 mg/kg of BD, the mean peak plasma concentration of BD was 10.1 ± 9.8 ng/mL at 2 h. The area under the plasma concentration–time curve (AUC0–24 h) was 72.1 ± 8.59 h ng/mL, and the elimination half‐life (T1/2) was 11.8 ± 1.9 h. In case of intravenous administration of BD at a dosage of 1 mg/kg, the AUC0–24 h was 281 ± 98.4 h?ng/mL, and the T1/2 was 8.79 ± 0.63 h. Based on these results, the oral bioavailability of BD in rats at 10 mg/kg is 2.57%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A simple and rapid high performance liquid chromatographic (HPLC) method for quantifying alendronate in beagle dog plasma was developed, validated and applied to a pharmacokinetic study. The sample preparation involved coprecipitation with CaCl2 and derivatization with o‐phthalaldehyde. Chromatographic separation was achieved on a Diamonsil? C18 (250 × 4.6 mm, 5 µm) using acetonitrile–0.4% EDTA‐Na2 (16:84, v/v) containing 0.034% of NaOH as mobile phase. The fluorimetric detector was operated at 339 nm (excitation) and 447 nm (emission). The linearity over the concentration range of 5.00–600 ng/mL for alendronate was obtained and the lower limit of quantification was 5.00 ng/mL. For each level of quality control samples, inter‐day and intra‐day precisions were less than 8.52 and 7.42% and accuracies were less than 9.07%. The assay was applied to the analysis of samples from a pharmacokinetic study. Following the oral administration of 70 mg alendronate sodium to beagle dogs, the maximum plasma concentration (Cmax) and elimination half‐life were 152 ± 27.3 and 1.75 ± 0.267 h, respectively. The method was demonstrated to be highly feasible and reproducible for pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A rapid and simple reverse‐phase high‐performance liquid chromatography (RP‐HPLC) was developed and validated for the quantification of kirenol in rat plasma after oral administration. Kirenol and darutoside (internal standard, IS) were extracted from rat plasma using Cleanert™ C18 solid‐phase extraction (SPE) cartridge. Analysis of the extraction was performed on a Thermo ODS‐2 Hypersil C18 reversed‐phase column with a gradient eluent composed of acetonitrile and 0.1% phosphoric acid. The flow rate was 1.0 mL/min and the detection wavelength was set at 215 nm. The calibration curve was linear over the range of 9.756–133.333 µg/mL (r2 = 0.9991) in rat plasma. The lower limits of detection and quantification were 2.857 and 9.756 µg/mL, respectively. The intra‐ and inter‐day precisions (relative standard deviation, RSD) were between 2.24 and 4.46%, with accuracies ranging from 91.80 to 102.74%. The extraction recovery ranged from 98.16 to 107.62% with RSD less than 4.81%. Stability studies showed that kirenol was stable in preparation and analytical process. The present method was successfully applied to the pharmacokinetic study of kirenol in male Sprague–Dawley rats after oral administration at a dose of 50 mg/kg. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive and simple liquid chromatography–tandem mass spectrometric (HPLC‐MS/MS) method for the determination of corilagin in rat plasma has been developed. Samples were prepared with protein precipitation method and analyzed with a triple quadrupole tandem mass spectrometer. We employed negative electrospray ionization as the ionization source and the analytes were detected in multiple reaction monitoring mode. Separation was achieved on a C8 column eluted with mobile phase consisting of methanol–0.1% formic acid in a gradient mode at the flow rate of 0.3 mL/min. The total run time was 7.0 min.This method was proved to have good linearity in the concentration range of 2.5–1000.0 ng/mL. The lower limit of quantification of corilagin was 2.5 ng/mL. The intra‐ and inter‐day relative standard deviationa across three validation runs for four concentration levels were both <9.8%. The relative error was within ±6.0%. This assay offers advantages in terms of expediency and suitability for the analysis of corilagin in rat plasma. The practical utility of this new HPLC‐MS/MS method was confirmed in pilot plasma concentration studies in rats following oral administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Ikarisoside A is a natural flavonoid isolated from Epimedium plants. To further evaluate its medicinal potential, a sensitive and robust LC–MS/MS method was developed and validated for the assay of ikarisoside A in rat plasma. Orientin was used as an internal standard. The electrospray ionization was operated in its negative ion mode while ikarisoside A and IS were measured by selected reaction monitoring using precursor‐to‐product ion transitions of m/z 499.1 → 353.0 and m/z 446.9 → 327.6, respectively. This LC–MS/MS method had good sensitivity (LLOQ = 1.5 ng/mL), accuracy (both intra‐ and inter‐day RE ≤ ±11.9%) and precision (both intra‐ and inter‐day RSD ≤8.5%). The pharmacokinetics of ikarisoside A was subsequently profiled in Sprague–Dawley rats. Following oral administration (35 mg/kg), ikarisoside A reached maximum plasma concentration (Cmax, 207.6 ± 96.7 ng/mL) attained at 1.10 ± 0.42 h. Following oral administration, the clearance and terminal half‐life were 42.9 ± 26.5 L/h/kg and 3.15 ± 0.80 h by oral route, respectively.  相似文献   

9.
A sensitive, rapid and specific high‐performance liquid chromatography tandem mass spectrometry method (HPLC‐MS/MS) was developed to determine ecliptasaponin A in rat plasma and tissues after oral administration. Ginsenoside Rg1 was used as the internal standard (IS). The plasma and tissues samples were prepared by liquid‐liquid extraction with ethyl acetate and separated on an Eclipse Plus C18 column (2.1 mm × 150 mm, 5 µm) at a flow rate of 0.4 mL/min using acetonitrile and water (containing 0.05% acetic acid) as the mobile phase. The tandem mass detection was carried out with eletrospray ionization in negative mode. Quantification was performed by using multiple reaction monitoring (MRM), which monitored the fragmentation of m/z 633.4→587.2 for ecliptasaponin A and m/z 859.4→637.4 for the IS. The calibration curves obtained were linear in different matrices, and the lower limit of quantification (LLOQ) achieved was 0.5 ng/mL both for rat plasma and tissues. The intra‐ and inter‐day precisions were below 15%. This method was successfully applied to pharmacokinetic study of ecliptasaponin A in rat plasma and tissues after oral administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A highly sensitive, specific and rapid LC‐ESI‐MS/MS method has been developed and validated for the quantification of paricalcitol (PAR) in human plasma (500 μL) using paricalcitol‐d6 (PAR‐d6) as an internal standard (IS) as per regulatory guidelines. A liquid–liquid extraction method was used to extract the analyte and IS from human plasma. Chromatography was achieved on Zorbax SB C18 column using an isocratic mobile phase in a gradient flow. The total chromatographic run time was 6.0 min and the elution of PAR and PAR‐d6 occurred at ~2.6 min. A linear response function was established for the range of concentrations 10–500 pg/mL in human plasma. The intra‐ and inter‐day accuracy and precision values for PAR met the acceptance criteria. The validated assay was applied to quantitate PAR concentrations in human plasma following oral administration of 4 µg capsules to humans. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A simple, rapid, and sensitive HPLC method based on 9H‐fluoren‐9‐ylmethyl chloroformate derivatization for the quantification of sertraline in rat plasma has been developed, requiring a plasma sample of only 0.1 mL, which was deproteinized and derivatized for 5 min in two single steps. The obtained derivative was stable at room temperature and was determined by HPLC using a fluorescence detector. The analytical column was a C(18) column and the mobile phase was acetonitrile and water (80:20, v/v). Calibration curves were linear in the range of 10–500 ng/mL. The limit of detection was approximately 3 ng/mL, and the lower limit of quantification was established at 10 ng/mL. The bias of the method was lower than 10%, and the within day as well as between day, relative standard deviations were lower than 12%. This analytical method was successfully applied to characterize sertraline pharmacokinetics in rats following intravenous (t1/2 = 213 ± 48 min, Cl = 43.1 ± 8.7 mL/min, Vd = 11560 ± 1861 mL) and oral (Cmax = 156 ± 76 ng/mL, tmax = 63.8 ± 16.3 min) administration of 2 and 5 mg, respectively.  相似文献   

12.
For the rational utilization and the quantitative quality control of the Stephania yunnanensis Lo, an HPLC‐DAD method was developed for the quantitative and simultaneous determination of five alkaloids in rat plasma (stepharine, sinomenine, palmatine, isocorydine and tetrahydropalmatine), which were the main active chemical constituents of this plant and belong to four kinds of isoquinoline‐type alkaloids (protoberberine, morphine, aporphine and protaporphine alkaloids). The contents of five alkaloids ranged from 0.09 to 2.32% (w/w). The method validation was tested for the linearity (r2 > 0.9975), precision (intra‐day RSD < 4.8% and inter‐day RSD < 4.9%), extraction recovery (85.49 ± 2.29% to 99.21 ± 1.48%) and stability (98.5 ± 5.3% to 101.2 ± 3.4%). We developed an HPLC‐DAD method to simultaneously measure these alkaloids in rat plasma after oral administration of the extract of this plant to rats. The results supported the hypothesis that isoquinoline alkaloids were the compounds responsible for the main pharmacological activities for anti‐inflammatory and analgesic.  相似文献   

13.
Astragaloside III (AST III), a naturally occurring saponin compound isolated from Radix Astragali, has been demonstrated to have anti‐gastric ulcer, immunomodulatory and antitumor effects. To evaluate its pharmacokinetics in rats, a rapid, sensitive and specific high‐performance liquid chromatography–tandem mass spectrometric (HPLC‐MS/MS) method has been developed and validated for the quantification of astragaloside III in rat plasma. Samples were pretreated using a simple protein precipitation with methanol–acetonitrile (50:50, v/v) and the chromatographic separation was performed on a C18 column by a gradient elution using a mobile phase consisting of water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. Astragaloside III and the internal standard (buspirone) were detected using a tandem mass spectrometer in positive multiple reaction monitoring mode. Method validation revealed excellent linearity over the range of 5.00–5000 ng/mL together with satisfactory intra‐ and inter‐day precision, accuracy and recovery. Stability testing showed that astragaloside III spiked into rat plasma was stable for 24 h at 20°C temperature, for up to 30 days at ?80°C, and during three freeze–thaw cycles. The method was successfully used to investigate the pharmacokinetic profile of AST III after oral (10 mg/kg) and intravenous (1.0 mg/kg) administration in rats. The oral absolute bioavailability of AST III was calculated to be 4.15 ± 0.67% with an elimination half‐life value of 2.13 ± 0.11 h, suggesting its poor absorption and/or strong metabolism in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A rapid and selective HPLC‐UV method was developed for the quantification of linezolid (LNZ) in human plasma and bronchoalveolar lavage (BAL) at the concentrations associated with therapy. Plasma samples were extracted by solid‐phase extraction followed by evaporation to dryness and reconstitution in mobile phase solution. The chromatographic separation was carried out on a C18 column with an isocratic mobile phase consisting of dihydrogen phosphate buffer 50 mm (pH 3.5) and acetonitrile (60:40 v/v). The detection was performed using a photodiode array. Under these conditions, a single chromatographic run could be completed within 12 min. The method was validated by estimating the precision and the accuracy for inter‐ and intra‐day analysis in the concentration range of 25–25600 ng/mL. The method was linear over the investigated range with all the correlation coefficients R > 0.999. The intra‐ and inter‐day precision was within 8.90% and the accuracy ranged from ?4.76 to +5.20%. This rapid and sensitive method was fully validated and could be applied to pharmacokinetic study for the determination of LNZ levels in human plasma and BAL samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Ginsenoside Rh4 (Rh4) and ginsenoside Rk3 (Rk3) are two active substances isolated from the processed Panax species. To further explore their potential medicinal application, a reliable liquid chromatography‐tandem mass spectrometry method (LC/MS/MS) was developed and validated for the quantification of Rh4 and Rk3 in rat plasma. Multiple ion monitoring and multiple reaction monitoring experiments were performed in negative ionization mode. This LC/MS/MS method had good selectivity, sensitivity (lower limit of quantification = 10 ng/mL), precision (intra‐ and inter‐day relative standard deviation ≤ 10.1) and accuracy (analytical recovery within 100 ± 10%). The pharmacokinetic profiles of Rh4 and Rk3 were subsequently assessed in Sprague–Dawley rats. Similar to many other ginsenosides, the oral bioavailability of Rh4 and Rk3 was unfavorable, and Rh4 and Rk3 did not have any measurable plasma exposure after oral administration (20 mg/kg). Fortunately, upon intravenous administration (5 mg/kg), both Rh4 and Rk3 possessed abundant plasma exposure, moderate clearance (Cl = 50.2 ± 7.7 and 23.8 ± 1.4 mL·min?1·kg?1, respectively) and terminal elimination half‐life (t1/2 λZ = 157.2 ± 65.2 and 99.5 ± 37.8 min, respectively). As Rh4 and Rk3 displayed favorable intravenous pharmacokinetic profiles, further exploration on their medicinal application is warranted. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of the present study was to characterize the excretion of pure vitexin‐4”‐O‐glucoside (VOG) in mice following oral and intravenous administration at a dose of 30 mg/kg. A sensitive and specific HPLC method with hespridin as internal standard, a Diamonsil C18 column protected with a KR C18 guard column and a mixture consisting of methanol–acetonitrile–tetrahydrofuran–0.1% glacial acetic acid (6:2:18:74, v/v/v/v) as mobile phase was developed and validated for quantitative analysis in biological samples. VOG could be excreted as prototype in excreta including urine and feces after both routes of administration, and the cumulative excretion of VOG was 24.31 ± 11.10% (17.97 ± 5.59% in urinary excretion; 6.34 ± 5.51% in fecal excretion) following oral dosing and 5.66 ± 3.94% (4.78 ± 3.13% in urinary excretion; 0.88 ± 0.81% in fecal excretion) following intravenous dosing. The results showed that the elimination of VOG after the two routes was fairly low, which meant that VOG was metabolized as other forms and the elimination after oral dosing was almost 4.3‐fold that after intravenous dosing. For both routes of administration, VOG excreted as prototype in urine was much more than that in feces, nearly 2.83‐fold for oral administration and 5.43‐fold for intravenous administration, which should be attributed to enterohepatic circulation. Taken together, renal excretion was the dominant path of elimination of VOG for oral and intravenous administration in mice and biliary excretion contributed less. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive rapid analytical method was established and validated to determine the bakkenolide A (BA) in rat plasma. This method was further applied to assess the pharmacokinetics of BA in rats receiving a single dose of BA. Liquid chromatography tandem mass spectrometry in multiple reaction monitoring mode was used in the method, and costundide was used as internal standard. A simple protein precipitation based on methanol was employed. The combination of a simple sample cleanup and short chromatographic running time (2.4 min) increased the throughput of the method substantially. The method was validated over the range of 1–1000 ng/mL with a correlation coefficient > 0.99. The lower limit of quantification was 1 ng/mL for BA in plasma. Intra‐ and inter‐day accuracies for BA were 93–112% and 103–104%, respectively, and the inter‐day precision was less than 15%. After a single oral dose of 20 mg/kg of BA, the mean peak plasma concentration (Cmax) of BA was 234.7 ± 161 ng/mL at 0.25 h. The area under the plasma concentration–time curve (AUC0–24 h) was 535.8 ± 223.7 h·ng/mL, and the elimination half‐life (T1/2) was 5.0 ± 0.36 h. In case of intravenous administration of BA at a dosage of 2 mg/kg, the area under the plasma concentration–time curve (AUC0–24 h) was 342 ± 98 h?ng/mL, and the elimination half‐life (T1/2) was 5.8 ± 0.7 h. Based on the results, the oral bioavailability of BA in rats at 20 mg/kg is 15.7%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A simple, rapid, selective and sensitive HPLC‐UV method has been developed and validated for the determination of ponicidin in rat plasma. The analyte was extracted from rat plasma by liquid–liquid extraction with ethyl acetate as the extraction solvent. The LC separation was performed on a Zorbax Eclipse XDB C18 analytical column (150 × 4.6 mm i.d., 5 µm) with an isocratic mobile phase consisting of methanol–water–phosphoric acid (45:55:0.01, v/v/v) at a flow rate of 1.0 mL/min. There was a good linearity over the range of 0.1–25 µg/mL (r = 0.9995) with a weighted (1/C2) least square method. The lower limit of quantification was proved to be 0.1 µg/mL. The accuracy was within ±10.0% in terms of relative error and the intra‐ and inter‐day precisions were less than 9.1% in terms of relative standard deviation. After validation, the method was successfully applied to characterize the pharmacokinetics of ponicidin in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A fast, selective and sensitive ultraperformance liquid chromatography–tandem mass spectrometry method was developed for determination and pharmacokinetic study of anastrozole in human plasma. Plasma sample pretreatment involved a one‐step extraction with diethyl ether of 500 µL plasma. The chromatographic separation was carried out on an Acquity UPLCTM BEH C18 column with a mobile phase consisting of methanol–10 mmol/L ammonium acetate (75:25, v/v) at a flow rate of 0.30 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring via electrospray ionization source with positive mode. A high throughput was achieved with a run time of 1.5 min per sample. The standard curve for anastrozole was linear (r2 ≥ 0.99) over the concentration range of 0.0550–27.5 ng/mL with a lower limit of quantification of 0.0550 ng/mL. The intra‐ and inter‐day precision (relative standard deviation) values were not higher than 14% and the accuracy (relative error) was within ±3.2% at three quality control levels. This simple, fast and highly sensitive method was fully validated and successfully applied to a clinical pharmacokinetic study of anastrozole in healthy volunteers after oral administration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号