首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thermoluminescence (TL), optical absorption (OA), electron spin resonance (ESR) and their relation to point defects in spessartine have been investigated. The TL glow curve presented four peaks at 150, 220, 260 and 335 °C. The 150 and 335 °C TL peaks growth curves presented a linear growth with radiation dose up to about 400 Gy, supralinearity above this dose, and saturation around 800–1000 Gy. The OA spectrum presented allowed spin transition bands due to Fe3+ and Mn2+ in dodecahedral environment. Absorption bands due to ultraviolet charge transfer of Fe3+ in octahedral and tetrahedral positions were also observed. Two ESR, a strong one around g?~?2 due to Fe3+ in octahedral position, and another weaker one at g?~?4 due to Fe3+ in tetrahedral position, have been detected. The effect of high temperature annealing (600–900 °C) before irradiation was also investigated.  相似文献   

2.
A high sensitivity TL/OSL-spectrometer has recently been built at the Freiberg Luminescence Dating Laboratory. It detects luminescence over a range of 200–800 nm simultaneously with a grating spectrograph and an attached liquid-nitrogen cooled CCD-array. The completely computer-controlled system allows free user defined measurement cycles in a temperature range of 20–700°C and optical stimulation from UV to IR with monochromatic light from a 200 W mercury lamp. The general construction of the apparatus and examples of spectra are presented.  相似文献   

3.
The timing of 110°C thermoluminescence (TL) and optically stimulated luminescence (OSL) sensitivity changes is explored using a natural (aeolian) quartz sample from Australia that was previously found to exhibit marked dose-dependent sensitivity change. The changes occur asynchronously; the 110°C TL sensitivity changes after dosing plus pre-heating, whereas the OSL sensitivity changes (proportionately with dose) after optical bleaching. Although the magnitude and saturation characteristics of the sensitivity changes are found to be similar, their non-synchronicity negates a direct link between the phenomena. Implications of these results for dating procedures are discussed. In particular, the results indicate that a single aliquot additive dose procedure similar to that developed for coarse-grained potassium feldspar should be possible for some quartz samples.  相似文献   

4.
The principal results of the investigation of thermally stimulated electron–hole and ionic processes in hydrothermal and gas-phase ZnO single crystals preexcited at low temperatures, based on simultaneous study of photo-EPR and thermoluminescence (TL), are presented. The nature of the traps determining the TL peaks at 17, 24, 40, 53, 90–110, 140–150, and 160–200 K is discussed. In particular, it has been established that the lithium paramagnetic centers (LiZn +–OI) play the role of hole traps in ZnO giving green and red TL in the temperature range 160–200 K and, in the case of association with small-sized donors, also TL in the temperature range 90–110 K. The other traps are electronic in character, and in the presence of acceptor lithium in the crystals, they form yellow-orange TL. Optical quenching of TL has been evaluated, and it has been found that there is a difference E 0.75 eV between the thermal and optical energies of ionization of lithium acceptors. Irreversible ionic processes associated with the healing of cationic vacancies at T 360–420 K have been revealed.  相似文献   

5.
Sputtered Cr/n-GaAs Schottky diodes have been prepared and annealed at 200 and 400 °C. The current–voltage (I–V) characteristics of the as-deposited and annealed diodes have been measured in the temperature range of 60–320 K with steps of 20 K. The effect of thermal annealing on the temperature-dependent I–V characteristics of the diodes has been investigated experimentally. The ideality factor and barrier height (BH) values for 400 °C annealed diode approximately remain unchanged from 120 to 320 K, and those of the as-deposited sample from 160 to 320 K. The departures from ideality at low temperatures have been ascribed to the lateral fluctuations of the BH. The BH values of 0.61 and 0.74 eV for the as-deposited and 400 °C annealed diodes were obtained at room temperature, respectively. A Richardson constant value of 9.83 A cm−2 K−2 for 400 °C annealed Schottky diode, which is in close agreement with the known value of 8.16 A cm−2 K−2 for n-type GaAs. Furthermore, T0 anomaly values of 15.52, 10.68 and 5.35 for the as-deposited and 200 and 400 °C annealed diodes were obtained from the nT versus T plots. Thus, it has been seen that the interface structure and quality improve by the thermal annealing at 400 °C.  相似文献   

6.
Zn1−xMnxFe2O4 (x = 0, 0.2 and 0.4) nanomaterials were synthesized by sol–gel citrate method and studied structural and gas sensing properties. The structural characteristics of synthesized nanomaterials were studied by X-ray diffraction measurement (XRD) and transmission electron microscope (TEM). The results revealed that the particle size is in the range of 30–35 nm for Mn–Zn ferrite with good crystallinity. The gas sensing properties were studied towards reducing gases like LPG, CH4, CO and ethanol and it is observed that Mn–Zn ferrite shows high response to ethanol at relatively lower operating temperature. The Zn0.6Mn0.4Fe2O4 nanomaterial shows better sensitivity towards ethanol at an operating temperature 300 °C. Incorporation of 1.5 wt.% Pd improved the sensitivity, selectivity, response time and reduced the operating temperature from 300 °C to 230 °C for ethanol sensor. The response time of 200 ppm ethanol in air is about 10s.  相似文献   

7.
Sr2MgSi2O7:Eu2+, Dy3+ (SMED) and Ba2MgSi2O7:Eu2+, Dy3+ (BMED) were synthesized with the solid-state reaction. The SMED shows long afterglow while the afterglow of BMED is not visible at room temperature. When the environmental temperature is 150 °C, the afterglow of SMED is not obvious while the BMED shows the long afterglow. The decay curves measured at different temperatures conform to this phenomenon. It ascribes to the different trap depths of different samples. The thermoluminescence (TL) curves of SMED peaks at 80 °C. BMED has two TL peaks peaking at about 80 and 175 °C respectively. The low temperature peak is weak and its density is small. The high-temperature peak reveals that one trap of BMED is deeper than the one of SMED. The afterglows of the phosphors strongly depend on the environmental temperature since the lifetime of the trapping carriers is temperature-dependence. BMED is a potential optimum long afterglow phosphor for the purpose of high-temperature application.  相似文献   

8.
An historic Strontianite-type specimen from Strontian, Scotland, UK, was characterized to broaden our knowledge on luminescence properties of common carbonates. These fibrous aggregates are Strontianite (SrxCa1−xCO3) with circa 6% of CaO, interfacial water, hydrosilicate anions and substitutional divalent cations, e.g., Ca2+, Mn2+, Fe2+ in structural Sr2+ positions. The specimen was analyzed by X-ray Fluorescence Spectrometry (XRF), Environmental Scanning Electron Microscopy coupled with an Energy Dispersive X-ray Spectroscopy (ESEM-EDS) probe, Spatially-resolved Cathodoluminescence under the Scanning Electron Microscope (SEM-CL), Differential-Thermal Analyses (DTA), Thermogravimetry (TG), Thermoluminescence (TL), Radioluminescence (RL) and High Resolution Spectra Thermoluminescence (3DTL), to gain an overview of the spectral emissions, the defect linkages were modified by heating from room temperature (RT) up to 500 °C. Substitutional transition elements are probably responsible for the spectral emission bands from 500 nm to 800 nm and hydrous molecules from 300 nm to 400 nm. DTA–TG analyses performed on little chips, to preserve the fiber interfaces coherence, exhibit minor endothermic peaks attributed to outflow of water groups in fiber interfaces. Both, CL and RL curves show common spectral positions but UV–blue and red emission intensities are counterbalanced since electron irradiation reduces the UV–blue emissions while X-irradiation increases them. The TL curves show a top thermal limit at 300 °C for the 300–400 nm TL emissions which become irreversibly destroyed, whereas the longer wavelength region emits at higher temperature. The non-reversible changes observed in the 320 nm and 360 nm bands during the spectra 3DTL emission could be linked with non-bridging oxygen defects, protons and hydroxyl groups and the red emissions to the 4G (4T1g)–6S Mn2+ ion transition. Following assignations and similar spectral CL patterns of Russian Strontianite samples, the emission-defect assignments: Dy3+ 480 nm; Tb3+ 540 nm; Dy3+ 580 nm and Sm3+ 640 nm cannot be disregarded.  相似文献   

9.
The optical and structural properties of mixed ZnO/MgO particles prepared by solution techniques are investigated by the cathodoluminescence and electron microscopy techniques. The samples annealed at 400–1000 °C show well crystalline wurtzite structure of the ZnO (MgZnO) particles with the size in range of 10–100 nm. Annealing at high temperatures (>700 °C) leads to Mg diffusion in ZnO and MgxZn1−xO alloy formation. The blue shifts of the near-band-edge emission as a result of the alloy band gap widening and quantum confinement effect for the small size particles are demonstrated.  相似文献   

10.
A comparative and simultaneous study of TSL and TSC above room temperature (20–400°C) has been performed on “as-grown” and “hydrogen-swept” synthetic quartz crystals. Following X- irradiations, TSL spectra (heating RATE = 1°C/s) feature a number of peaks: at 75°C an intense structure is observed (the well-known “100°C” peak of quartz); the analysis of this peak obtained by numerical methods has shown that it follows monomolecular kinetics, giving a value of 0.83 eV for the trap depth. Additional peaks are observed at 110°C and 160°C, followed by weaker and less resolved emissions above 200°C. TSC peaks at 80°C, 120°C and 160°C, particularly evident in as-grown samples when measured with the electric field applied along the x-axis, can be associated to the corresponding TSL peaks. However, spectra performed with the electric field applied along the z-axis evidence different features. In as-grown samples a strong and broad peak at approximately 132°C is observed, while hydrogen-swept samples are characterized by two peaks at 180°C and 275°C. Such an anisotropic character, and the fact that no TSL structures are observed in the same temperature range, support the hyporthesis of an ionic nature for the latter peaks. TSC “pre-dose” measurements of the 75°C peak show that no current enhancement is observed upon irradiational and heating treatment: this result is in accordance with previous radioluminescence and thermally stimulated exoelectron emission experiments and supports the proposed model of the dynamics of this effect.  相似文献   

11.
A recently proposed 13C–1H recoupling sequence operative under fast magic-angle spinning (MAS) [K. Takegoshi, T. Terao, Solid State Nucl. Magn. Reson. 13 (1999) 203–212.] is applied to observe 13C–1H and 15N–1H dipolar powder patterns in the 1H–15N–13C–1H system of a peptide bond. Both patterns are correlated by 15N-to-13C cross polarization to observe one- or two-dimensional (1D or 2D) correlation spectra, which can be simulated by using a simple analytical expression to determine the H–N–C–H dihedral angle. The 1D and 2D experiments were applied to N-acetyl[1,2-13C,15N] -valine, and the peptide φ angle was determined with high precision by the 2D experiment to be ±155.0°±1.2°. The positive one is in good agreement with the X-ray value of 154°±5°. The 1D experiment provided the value of φ=±156.0°±0.8°.  相似文献   

12.
The TL glow curve of X-ray irradiated pure and Cu-doped Li2B4O7 shows that the most intense TL peak is at 160°C. In the present work the characteristics of the TL and PTTL glow curves from gamma irradiated pure Li2B4O7 single crystal samples (prepared by Mitui Kinzoku Kougyo, Japan) have been studied. The samples were irradiated with different gamma doses (from 0.5 up to 500 Gy) using a 60Co gamma ray source at a dose rate of 78 Gy h−1. The TL glow curve shows three intense peaks (at 160°C, 260 and 305°C) and three weak ones (at 110, 140 and 220°C). The most intense TL peak is at 160°C, which agrees with the TL glow curve from X-ray irradiated samples [Kutomi Y. and Tomita A. (1990) TSEE and TL of Li2B4O7:Cu single crystals. Radiat. Prot. Dosim. 33, 347–350]. The 305°C peak in gamma irradiated samples also appears to be very intense, which indicates its possible use in high-dose high-temperature dosimetry. Further, the characteristics of the PTTL glow curve have been studied as a function of ultraviolet exposure and number of repeated PTTL cycles.  相似文献   

13.
The Ag2O–TiO2–SiO2 glasses were prepared by Ag+/Na+ ion-exchange method from Na2O–TiO2–SiO2 glasses at 380–450 °C below their glass transition temperatures (Tg), and their electrical conductivities were investigated as functions of TiO2 content and the ion-exchange ratio (Ag/(Ag+Na)). In a series of glasses 20R2xTiO2·(80−x)SiO2 with x=10, 20, 30 and 40 in mol%, the electrical conductivities at 200 °C of the fully ion-exchanged glasses of R=Ag were in the order of 10−5 or 10−4 S cm−1 and were 1 or 2 orders of magnitude higher than those of the initial glasses of R=Na. The glass of x=30 exhibited the highest increase of conductivity from 3.8×10−7 to 1.3×10−4 S cm−1 at 200 °C by Ag+/Na+ ion exchange among them. When the ion-exchange ratio was changed in 20R2O·30TiO2·50SiO2 system, the electrical conductivity at 200 °C exhibited a minimum value of 7.6×10−8 S cm−1 around Ag/(Ag+Na)=0.3 and increased steeply in the region of Ag/(Ag+Na)=0.5–1.0. When the ion-exchange temperature was changed from 450 to 400 °C, the conductivity of the ion-exchanged glass of x=30 decreased. The infrared spectroscopy measurement revealed that the ion-exchange temperature of 450 °C induced a structural change in the glass of x=30. The Tg of the fully ion-exchanged glass of x=30 was 498 °C. It was suggested that the incorporated silver ions changed the average coordination number of titanium ions to form higher ion-conducting pathway and resulted in high conductivity in the titanosilicate glasses.  相似文献   

14.
Zirconium doped zinc oxide thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 400 °C, 450 °C and 500 °C using zinc and zirconium chlorides as precursors. The effect of zirconium dopant and surface roughness on the nonlinear optical properties was investigated using atomic force microscopy (AFM) and third harmonic generation (THG). The best value of susceptibility χ(3) was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility χ(3) = 20.49 × 10−12 (esu) of the studied films was found for the 5% doped sample at 450 °C.  相似文献   

15.
Zhuo Li  Huiqing Fan   《Solid State Ionics》2009,180(20-22):1139-1142
The aging properties of 0.01 mol% Mn-doped Ba0.8Sr0.2TiO3 ceramics have been investigated from 30 °C to 400 °C at various frequencies. Decreases in ε′(T) of the aged sample compared to the fresh one around the tetragonal–cubic transition and in the regime of diffusion have been observed. The activation energy Ea = 1.25 eV obtained from the J–T loop at zero electric field indicates that oxygen vacancies dominate in the aging. The symmetry-conforming principle of point defects was employed to explain the time and temperature dependence of aging in the dielectric constant and double/constricted PE loops of the samples aged in the paraelectric and ferroelectric state.  相似文献   

16.
Melt-spun ribbons with composition Sm2+Y(Co0.8Fe0.1Mn0.1)17BX (X=0–1.0 and Y=0–0.2) were fabricated with a wheel speed of 50 m/s, followed by annealing in the temperature range of 500–800°C for 2.5–60 min. Our results show that all the ribbons annealed up to 800°C are composed of a TbCu7-type phase as the main phase. The highest coercivity of 8.7 kOe is obtained in a Sm-rich sample with composition Sm2.2(Co0.8Fe0.1Mn0.1)17 annealed at 750°C for 5 min. It is found that these magnets show a very promising high-temperature performance – much better than those of typical sintered 2 : 17 magnets.  相似文献   

17.
A novel measurement method of temperature based on the phenomena that the phase difference between principle polarization states in the optical retarder is function of temperature is described. The polarization state of optical beam is changed as it passes through the optical retarder, which depends on the temperature. The temperature of optical retarder is determined by comparison of the power difference between principal polarization states. We demonstrate successfully the temperature measurement by using a polarization maintaining fiber as the optical retarder. With a 100 mm length of the fiber optic retarder, the change rate of phase difference on temperature was 0.236 rad/°C and the measurement error was ±0.038°C over the temperature range of −2.6 – +3.4°C. With a 11.5 mm length of the fiber optic retarder, the change rate of phase difference on temperature was 0.021 rad/°C and the measurement error was ±0.79°C over the temperature range of −8.5 – +86.5°C.  相似文献   

18.
Highly transparent and conductive scandium doped zinc oxide (ZnO:Sc) films were deposited on c-plane sapphire substrates by sol–gel technique using zinc acetate dihydrate [Zn(CH3COO)2·2H2O] as precursor, 2-methoxyethanol as solvent and monoethanolamine as a stabilizer. The doping with scandium is achieved by adding 0.5 wt% of scandium nitrate hexahydrate [(ScNO3·6H2O)] in the solution. The influence of annealing temperature (300–550 °C) on the structural, optical and electrical properties was investigated. X-ray Diffraction study revealed that highly c-axis oriented films with full-width half maximum of 0.16° are obtained at an annealing temperature of 400 °C. The surface morphology of the films was judged by SEM and AFM images which indicated formation of grains. The average transmittance was found to be above 92% in the visible region. ZnO:Sc film, annealed at 400 °C exhibited minimum resistivity of 1.91 × 10−4 Ω cm. Room-temperature photoluminescence measurements of the ZnO:Sc films annealed at 400 °C showed ultraviolet peak at 3.31eV with a FWHM of 11.2 meV, which are comparable to those found in high-quality ZnO films. Reflection high-energy electron diffraction pattern confirmed the epitaxial nature of the films even without introducing any buffer layer.  相似文献   

19.
We have investigated the effect of the annealing time on the structural and abnormal optical changes of amorphous platinum oxide thin films on quartz glass substrate by dc magnetron sputtering by using a pure platinum target. With increasing the annealing time, the decomposition phenomenon of a-PtOx and the formation of Pt nanoclusters were also observed. X-ray diffraction and Raman scattering measurements confirmed that the change derives from the formation of Pt nanoclusters due to the thermal decomposition. A transmittance measurement of a-PtOx thin films annealed at 600 °C for 0–4 min demonstrated abnormal optical changes.  相似文献   

20.
The real-time monitoring of the second-harmonic generation (SHG) was used to optimize the poling condition and to study the nonlinear optical (NLO) properties of the polyetherketone (PEK-c) guest–host polymer films. The high second-order NLO coefficient χ33(2)=11.02 pm/v measured at 1.064 μm was achieved when the weight percent of DR1 guest in the polymer system is 20%. The NLO activity of the poled DR1/PEK-c polymer film can maintain more than 80% of its initial value when temperature is under 100°C, and the normalized second-order NLO coefficient can maintain more than 85% after 2400 s at 80°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号